Synthesis of 3D porous flower-like NiO/Ni6MnO8 composites for supercapacitor with enhanced performance

  • Junjie Zhang
  • Ruirui Hu
  • Peng Dai
  • Zhiman Bai
  • Xinxin Yu
  • Mingzai Wu
  • Guang Li
Article
  • 46 Downloads

Abstract

Supercapacitors (SCs) have shown great potential to be used as power sources to drive microelectronic devices. However, most of present SCs employing carbon-based materials show low energy density due to the low specific capacitance of carbon-based materials. As a result, their application potential in power sources is greatly limited. In this work, 3D porous flower-like NiO/Ni6MnO8 composite were synthesized as novel pseudocapacitive electrode materials for SCs. The composite shows high electrode/electrolyte contact surface, short path length for electronic transport, and convenient diffusion paths for ionic transport. Therefore, the mesoporous structures can effectively facilitate ion/electron transfer inside the block of electrodes and at the electrode/electrolyte interface. The novel NiO/Ni6MnO8 pseudocapacitive electrode materials exhibit enhanced specific capacitance as high as 433 F g−1 at 1 A g−1, much higher than that of pure NiO (193 F g−1) and pure Ni6MnO8 (201 F g−1), and excellent charge/discharge cycle life, achieving 91.9% capacitance retention after 1000 cycles.

Notes

Acknowledgements

This work was financed by National Natural Science Foundation of China (11374013, 11404001, 51502002, 51602002), Outstanding young talent fund of Anhui Province (J05201424) and International cooperation project of Anhui provincial department of Science and Technology (1704e1002209).

References

  1. 1.
    Z.L. Wang, Toward self-powered sensor networks. Nano Today 5, 512–514 (2010)CrossRefGoogle Scholar
  2. 2.
    Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chem. 51, 11700–11721 (2012)CrossRefGoogle Scholar
  3. 3.
    Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24, 280–285 (2012)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, Y. Xia, Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25, 5336–5342 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Hu, K. Zhang, S. Li, S. Jia, C. Ye, Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. J. Mater. Chem. A 2, 20916–20922 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Zhang, H. Hu, W. Yao, C. Ye, Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. J. Mater. Chem. A 3, 617–623 (2015)CrossRefGoogle Scholar
  7. 7.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  8. 8.
    Z. Pei, H. Hu, G. Liang, C. Ye, Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Lett. 9, 19 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010)CrossRefGoogle Scholar
  10. 10.
    H. Hu, Z. Pei, H. Fan, C. Ye, 3D Interdigital Au/MnO2/Au stacked hybrid electrodes for On-Chip microsupercapacitors. Small 12, 3059–3069 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Song, K.-S. Moon, C.-P. Wong, Recent developments in design and fabrication of graphene-based interdigital micro-supercapacitors for miniaturized energy storage devices. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 1752–1765 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Wang, Y. Zhao, C. Wu, G.G. Wu, Y. Ma, X. Dong, B.L. Zhang, G.T. Du, Ultraviolet electroluminescence properties from devices based on n-ZnO/i-NiO/p-Si light-emitting diode. Optics Commun. 395, 94–97 (2017)CrossRefGoogle Scholar
  14. 14.
    L.H. Nie, J. Wang, Q. Tan, In-situ preparation of macro/mesoporous NiO/LaNiO3 pervoskite composite with enhanced methane combustion performance. Catal. Commun. 97, 1–4 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Lu, Y.H. Ma, S.Y. Ma, S.H. Yan, Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor. Ceram. Int. 43, 7508–7515 (2017)CrossRefGoogle Scholar
  16. 16.
    I. Hwang, J. Jeong, K. Lim, J. Jung, Microstructural characterization of spray-dried NiO-8YSZ particles as plasma sprayable anode materials for metal-supported solid oxide fuel cell. Ceram. Int. 43, 7728–7735 (2017)CrossRefGoogle Scholar
  17. 17.
    Z.L. Gu, D. Bin, Y. Feng, K. Zhang, J. Wang, B. Yan, S.M. Li, Z.P. Xiong, C.Q. Wang, Y. Shiraishi, Y.K. Du, Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation. Appl. Surf. Sci. 411, 379–385 (2017)CrossRefGoogle Scholar
  18. 18.
    Z.L. Yan, Q.Y. Hu, G.C. Yan, H.K. Li, K.M. Shih, Z.W. Yang, X.H. Li, Z.X. Wang, J.X. Wang, Co3O4/Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries. Chem. Eng. J. 321, 495–501 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Shang, M. Sun, S.M. Chang, X. Che, X.M. Cao, L. Wang, Y. Guo, W.C. Zhan, Y.L. Guo, G.Z. Lu, Activity and stability of Co3O4-based catalysts for soot oxidation: the enhanced effect of Bi2O3 on activation and transfer of oxygen. Appl. Catal. B 209, 33–44 (2017)CrossRefGoogle Scholar
  20. 20.
    Z.Y. Pu, H. Zhou, Y.F. Zheng, W.Z. Huang, X.N. Li, Enhanced methane combustion over Co3O4 catalysts prepared by a facile precipitation method: Effect of aging time. Appl. Surf. Sci. 410, 14–21 (2017)CrossRefGoogle Scholar
  21. 21.
    Y.Y. Hu, C.S. Yan, D.H. Chen, C.D. Lv, Y. Jiao, G. Chen, One-dimensional Co3O4 nanonet with enhanced rate performance for lithium ion batteries: carbonyl-beta-cyclodextrin inducing and kinetic analysis. Chem. Eng. J. 321, 31–39 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Al Nafiey, A. Addad, B. Sieber, G. Chastanet, A. Barras, S. Szunerits, R. Boukherroub, Reduced graphene oxide decorated with Co3O4 nanoparticles (rGO-Co3O4) nanocomposite: a reusable catalyst for highly efficient reduction of 4-nitrophenol, and Cr(VI) and dye removal from aqueous solutions. Chem. Eng. J. 322, 375–384 (2017)CrossRefGoogle Scholar
  23. 23.
    C.L. Xiao, S.N. Li, X.Y. Zhang, D.R. MacFarlane, MnO2/MnCo2O4/Ni heterostructure with quadruple hierarchy: a bifunctional electrode architecture for overall urea oxidation. J. Mater. Chem. A 5, 7825–7832 (2017)CrossRefGoogle Scholar
  24. 24.
    H.T. Wu, W. Sun, Y. Wang, F. Wang, J.F. Liu, X.Y. Yue, Z.H. Wang, J.S. Qiao, D.W. Rooney, K.N. Sun, Facile synthesis of hierarchical porous three-dimensional free-standing MnCo2O4 cathodes for long-life Li-O-2 batteries. ACS Appl. Mater. Interfaces 9, 12355–12365 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Velmurugan, S.M. Chen, Synthesis and characterization of porous MnCo2O4 for electrochemical determination of cadmium ions in water samples. Sci. Rep. 7, 653 (2017)CrossRefGoogle Scholar
  26. 26.
    L.P. Kuang, F.Z. Ji, X.X. Pan, D.L. Wang, X.M. Chen, D. Jiang, Y. Zhang, B.F. Ding, Mesoporous MnCo2O4.5 nanoneedle arrays electrode for high-performance asymmetric supercapacitor application. Chem. Eng. J. 315, 491–499 (2017)CrossRefGoogle Scholar
  27. 27.
    X.D. Hu, S.M. Zhang, X. Li, X.H. Sun, S. Cai, H.M. Ji, F. Hou, C.M. Zheng, W.B. Hu, Large-scale and template-free synthesis of hierarchically porous MnCo2O4.5 as anode material for lithium-ion batteries with enhanced electrochemical performance. J. Mater. Sci. 52, 5268–5282 (2017)CrossRefGoogle Scholar
  28. 28.
    J.X. Zhao, C.W. Li, Q.C. Zhang, J. Zhang, X.N. Wang, Z.Y. Lin, J.J. Wang, W.B. Lv, C.H. Lu, C.P. Wong, Y.G. Yao, An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. J. Mater. Chem. A 5, 6928–6936 (2017)CrossRefGoogle Scholar
  29. 29.
    V. Venkatachalam, A. Alsalme, A. Alswieleh, R. Jayavel, Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem. Eng. J. 321, 474–483 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Pan, H. Gao, M.Y. Zhang, L. Li, Z.B. Wang, Facile synthesis of ZnCo2O4 micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes. J. Alloy. Compd. 702, 381–387 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Pan, H. Gao, M.Y. Zhang, L. Li, G.M. Wang, X.Y. Shan, Three-dimensional porous ZnCo2O4 sheet array coated with Ni(OH)(2) for high-performance asymmetric supercapacitor. J. Colloid Interface Sci. 497, 50–56 (2017)CrossRefGoogle Scholar
  32. 32.
    Q.M. Gan, K.M. Zhao, S.Q. Liu, Z. He, MOF-derived carbon coating on self-supported ZnCo2O4-ZnO nanorod arrays as high-performance anode for lithium-ion batteries. J. Mater. Sci. 52, 7768–7780 (2017)CrossRefGoogle Scholar
  33. 33.
    X.W. Hu, S. Liu, B.T. Qu, X.Z. You, Starfish-shaped Co3O4/ZnFe2O4 hollow nanocomposite: synthesis, supercapacity, and magnetic properties. ACS Appl. Mater. Interfaces 7, 9972–9981 (2015)CrossRefGoogle Scholar
  34. 34.
    L. Wang, G.R. Duan, J.W. Zhu, S.M. Chen, X.H. Liu, High capacity supercapacitor material based on reduced graphene oxide loading mesoporpus murdochite-type Ni6MnO8 nanospheres. Electrochim. Acta 219, 284–294 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Taguchi, S. Tahara, M. Okumura, K. Hirota, Synthesis of murdochite-type Ni6MnO8 with variable specific surface areas and the application in methane oxidation. J. Solid State Chem. 215, 300–304 (2014)CrossRefGoogle Scholar
  36. 36.
    R. Kruger, B. Schulz, S. Naler, R. Rauer, D. Budelmann, J. Backstrom, K.H. Kim, S.W. Cheong, V. Perebeinos, M. Rubhausen, Orbital ordering in LaMnO3 investigated by resonance Raman spectroscopy. Phys. Rev. Lett. 92, 097203 (2004)CrossRefGoogle Scholar
  37. 37.
    M. Scharen, K. Kiri, S. Riede, M. Gardener, U. Meyer, J. Hummel, T. Urich, G. Breves, S. Danicke, Alterations in the Rumen liquid-, particle- and epithelium-asoociated microbiota of dairy cows during the transition from a Silage- and concentrate-based ration to pasture in spring. Front. Microbiol. 8, 744 (2017)CrossRefGoogle Scholar
  38. 38.
    P.F. Zhang, S.F. Lu, J.Q. Li, H.T. Xue, W.H. Li, P. Zhang, Characterization of shale pore system: a case study of Paleogene Xin’gouzui formation in the Jianghan basin, China. Mar. Pet. Geol. 79 (2017) 321–334CrossRefGoogle Scholar
  39. 39.
    J. Yabuzaki, Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database (2017).  https://doi.org/10.1093/database Google Scholar
  40. 40.
    A. Taheri, E.G. Babakhani, J. Towfighi, Methyl mercaptan removal from natural gas using MIL-53(Al). J. Nat. Gas Sci. Eng. 38, 272–282 (2017)CrossRefGoogle Scholar
  41. 41.
    W.X. Ren, G.S. Li, S.C. Tian, M. Sheng, L.D. Geng, Adsorption and surface diffusion of supercritical methane in shale. Ind. Eng. Chem. Res. 56, 3446–3455 (2017)CrossRefGoogle Scholar
  42. 42.
    C. Poole, Z. Mester, M. Miro, S. Pedersen-Bjergaard, J. Pawliszyn, Extraction for analytical scale sample preparation (IUPAC Technical Report). Pure Appl. Chem. 88, 649–687 (2016)Google Scholar
  43. 43.
    W.Y. Xia, L. Tan, N. Li, J.C. Li, S.H. Lai, Nickel cobaltite@nanocarbon hybrid materials as efficient cathode catalyst for oxygen reduction in microbial fuel cells. J. Mater. Sci. 52, 7539–7545 (2017)CrossRefGoogle Scholar
  44. 44.
    R. Bacani, L.M. Toscani, T.S. Martins, M.C.A. Fantini, D.G. Lamas, S.A. Larrondo, Synthesis and characterization of mesoporous NiO2/ZrO2-CeO2 catalysts for total methane conversion. Ceram. Int. 43, 7851–7860 (2017)CrossRefGoogle Scholar
  45. 45.
    J.L. Liu, J. Wang, Z.L. Ku, H.H. Wang, S. Chen, L.L. Zhang, J.Y. Lin, Z.X. Shen, Aqueous rechargeable alkaline CoxNi2–xS2/TiO2 battery. ACS Nano 10, 1007–1016 (2016)CrossRefGoogle Scholar
  46. 46.
    Z.B. Lei, F.H. Shi, L. Lu, Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interfaces 4, 1058–1064 (2012)CrossRefGoogle Scholar
  47. 47.
    M. Yu, J.P. Chen, J.H. Liu, S.M. Li, Y.X. Ma, J.D. Zhang, J.W. An, Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim. Acta 151, 99–108 (2015)CrossRefGoogle Scholar
  48. 48.
    A. Baraket, M. Lee, N. Zine, M. Sigaud, J. Bausells, A. Errachid, A fully integrated electrochemical biosensor platform fabrication process for cytokines detection. Biosens. Bioelectron. 93, 170–175 (2017)CrossRefGoogle Scholar
  49. 49.
    J. Yu, F.X. Ma, Y. Du, P.P. Wang, C.Y. Xu, L. Zhen, In situ growth of Sn-doped Ni3S2 nanosheets on Ni Foam as high-performance electrocatalyst for hydrogen evolution reaction. Chemelectrochem 4, 594–600 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Junjie Zhang
    • 1
  • Ruirui Hu
    • 1
  • Peng Dai
    • 1
  • Zhiman Bai
    • 1
  • Xinxin Yu
    • 1
  • Mingzai Wu
    • 1
  • Guang Li
    • 1
  1. 1.School of Physics and Materials ScienceAnhui UniversityHefeiChina

Personalised recommendations