NiO hollow nanospheres with different surface by a bubble-template approach and its gas sensing

Article
  • 28 Downloads

Abstract

In this work, we report on the use of bubbles as a template, can adopt a slight hydrothermal method and subsequent calcination synthesized NiO hollow sphere successfully, and then control the reaction time and temperature conditions to form two different NiO surface. It was found that the fluffy structure with pores and the flower-like structure with nanometer plate. The results show that NiO with hollow sphere has excellent performance in gas sensing test and its special surface has high specific surface area, which has good response sensitivity to 400 ppm C2H5OH. So, it is a promising sensing material for detection of C2H5OH. In addition, based on the experimental results, we also proposed that the evolution mechanism about NiO hollow spheres and the gas sensitive mechanism on the surface of microspheres.

Notes

Acknowledgements

This work is funded by National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201710611044).

References

  1. 1.
    Y. Zhang, W. Zeng, New insight into gas sensing performance of nanoneedle-assembled and nanosheet-assembled hierarchical NiO nanoflowers. Mater. Lett. 195, 217–219 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Hu, G. Chen, C. Deng et al., Green microwave-assisted synthesis of hierarchical NiO architectures displaying a fast and high adsorption behavior for Congo red. Mater. Lett. 170, 139–141 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Yu, Y. Xia, W. Zeng, Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance. Mater. Lett. 206, 80–83 (2017)CrossRefGoogle Scholar
  4. 4.
    L.L. Gu, W.H. Xie, S.A. Bai, B.L. Liu, S. Xue, Q. Li, D.Y. He, Facile fabrication of binder-free NiO electrodes with high rate capacity for lithium-ion batteries. Appl. Surf. Sci. 368, 298–302 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Wang, W. Zeng, New insights into multi-hierarchical nanostructures with size-controllable blocking units for their gas sensing performance. J. Mater. Sci: Mater. Electron. 28, 10847–10852 (2017)Google Scholar
  6. 6.
    L. Zhu, W. Zeng, A novel coral rock-like ZnO and its gas sensing. Mater. Lett. 209, 244–246 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol–gel method. J. Mater. Sci.: Mater. Electron. 20, 14965–14973 (2017)Google Scholar
  8. 8.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 11, 6155–6165 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths. 4, 374–381 (2017)CrossRefGoogle Scholar
  10. 10.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 21, 16459–16466 (2017)Google Scholar
  11. 11.
    H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 423, 1025–1034 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Zhu, Y. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)CrossRefGoogle Scholar
  13. 13.
    X. Liang, J.J. Xiao, Y. Gou, B.H. Chen, Synthesis and catalysis properties of NiO flower-like spheres and nanosheets: water-induced phase transformation of nickel hydroxides. J. Mater. Res. 26, 3091–3097 (2011)CrossRefGoogle Scholar
  14. 14.
    Y.C. Chen, F.C. Zheng, Y.L. Min, T. Wang, Y.G. Zhang, Y.X. Wang, Facile procedure to synthesize highly crystalline Ag/NiO nanocomposite microspheres and their photocatalytic activity. J. Mater. Sci.: Mater. Electron. 23, 1592–1598 (2012)Google Scholar
  15. 15.
    F. Meng, P. Zhong, Z. Li, X. Cui, H. Zheng, Surface structure and catalytic performance of Ni–Fe catalyst for low-temperature CO hydrogenation. J. Chem. 2014, 1–7 (2014)Google Scholar
  16. 16.
    Z.G. An, J.J. Zhang, Silicate glass/Ni-NiO double shell composite hollow microspheres: fast combustion synthesis and electromagnetic properties. J. Mater. Res. 93, 230–237 (2017)Google Scholar
  17. 17.
    T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance. J. Power. Sci. 359, 371–378 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Liu, L.P. Zhao, B.Q. Wang, P. Sun, Q.J. Wang, Y. Gao, X.S. Liang, T. Zhang, G.Y. Lu, Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit. J. Inter. Sci. 495, 207–215 (2017)Google Scholar
  19. 19.
    S.Q. Ci, T.Z. Huang, Z.H. Wen, S.M. Cui, S. Mao, D.A. Steeber, J.H. Chen, Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens. Bioelectron. 54, 251–257 (2014)CrossRefGoogle Scholar
  20. 20.
    G.Q. Zhang, L. Yu, H.E. Hoster et al., Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale 5, 877–881 (2013)CrossRefGoogle Scholar
  21. 21.
    F. Al-Hazmi, T. Al-Harbi, W.E. Mahmoud, Synthesis and characterization of thin shell hollow sphere NiO nanopowder via ultrasonic technique. Mater. Lett. 86, 28–30 (2012)CrossRefGoogle Scholar
  22. 22.
    C. Kuang, W. Zeng, H. Ye, Y. Li, A novel approach for fabricating NiO hollow spheres for gas sensors. Physica E 97, 314–316 (2018)CrossRefGoogle Scholar
  23. 23.
    E. Uchaker, N. Zhou, Y.W. Li et al., Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J. Phys. Chem. C. 117, 1621–1626 (2013)CrossRefGoogle Scholar
  24. 24.
    N.G. Cho, et al., Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method. Sens. Actuators B: Chem. 155 366–371 (2011)CrossRefGoogle Scholar
  25. 25.
    X.Y. Yan, X.L. Tong, J. Wang, C.W. Gong, M.G. Zhang, L.P. Liang, Rational synthesis of hierarchically porous NiO hollow spheres and their supercapacitor application. Mater. Lett. 95, 1–4 (2013)CrossRefGoogle Scholar
  26. 26.
    C.H. Ding, D. Yan, Y.J. Zhao, A bubble-template approach for assembling Ni–Co oxide hollow microspheres with an enhanced electrochemical performance as an anode for lithium ion batteries. Phys. Chem. Chem. Phys. 18, 25879–25886 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Zhu, W. Zeng, H. Ye, Y. Li, Volatile organic compound sensing based on coral rock-like ZnO. Mater. Res. Bull. 100, 259–264 (2018)CrossRefGoogle Scholar
  28. 28.
    G.X. Zhu, C.Y. Xi, H. Xu, D. Zheng, Y.J. Liu, X. Xu, X.P. Shen, Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv. 2, 4236–4241 (2012)CrossRefGoogle Scholar
  29. 29.
    H.J. Kim, K.I. Choi, K.M. Kim, C.W. Na, J.H. Lee, Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens. Actuators B 171, 1029–1037 (2012)CrossRefGoogle Scholar
  30. 30.
    B. Zhao, X.K. Ke, J.H. Bao, C.L. Wang, L. Dong, Synthesis of flower-like NiO and effects of morphology on its catalytic properties. J. Phys. Chem. C. 113, 14440–14447 (2009)CrossRefGoogle Scholar
  31. 31.
    C.Y. Cao, W. Guo, Z.M. Cui, W.G. Cong, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 21(2011), 3204–3209Google Scholar
  32. 32.
    J. Xu, D.W. Su, W.Z. Bao, Y.F. Zhao, X.Q. Xie, G.X. Wang, Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage. J. Alloys Compd. 684, 691–698 (2016)CrossRefGoogle Scholar
  33. 33.
    L.P. Zhu, G.H. Liao, Y. Yang, H.M. Xiao, J.F. Wang, S.Y. Fu, Self-assembled 3D flower-like hierarchical β-Ni(OH)2 hollow architectures and their in situ thermal conversion to NiO, Nanoscale Res Lett. 4, 550–557 (2009)CrossRefGoogle Scholar
  34. 34.
    J.Y. Zhang, Q.H. Yang, Y.Z. Song, et al., Preparation of NiO nanosheets and porous nanosheets self-assembled hollow microspheres by non-template hydrothermal method and their magnetic properties. Acta Chim. Sinica. 65, 2069–2075 (2007)Google Scholar
  35. 35.
    B. Liu, H.Q. Yang, H. Zhao, L.J. An, L.H. Zhang et al., Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals. Sens. Actuators B: Chem. 156, 251–262 (2011)CrossRefGoogle Scholar
  36. 36.
    N.G. Cho, I.S. Hwang, H.G. Kim, J.H. Lee, I.D. Kim, Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method. Sens. Actuators B: Chem. 155, 366–371 (2011)CrossRefGoogle Scholar
  37. 37.
    J.A. Dirksen, K. Duval, T.A. Ring, NiO thin-film formaldehyde gas sensor. Sens. Actuators B: Chem. 80, 106–115 (2001)CrossRefGoogle Scholar
  38. 38.
    N.G. Cho, H.S. Woo, J.H. Lee, I.D. Kim et al., Thin-walled NiO tubes functionalized with catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial template. Chem. Commun. 47, 11300–11302 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.College of Materials Science and EngineeringChongqing University of TechnologyChongqingChina

Personalised recommendations