Dielectric and electrical study along with the evidences of small polaron tunnelling in Gd doped bismuth ferrite lead titanate composites

Article
  • 44 Downloads

Abstract

The phase formation of the polycrystalline samples of 0.6BiGdxFe1−xO3–0.4PbTiO3 (x = 0.05, 0.10, 0.15 and 0.20) was studied by X-ray diffraction technique prepared by using solid state reaction route. From analysing the X-ray diffraction pattern, the appearance of morphotrophic phase boundary between rhombohedral and tetragonal phase was observed in some of these composites at room temperature. The dielectric parameters are measured in a frequency range between (102–106) Hz at different temperatures. The nyquist plot (Z′ vs. Z″) fit confirmed the contribution of bulk and grain boundary effect in the materials. Impedance, ac and dc conductivity showed the negative temperature co-efficient of resistance behavior. The temperature dependence of dc conductivity and relaxation time followed Arrhenius equation. The ac conductivity followed by the power law showed that the dynamics of charge carrier arises due to translational hopping motion for x = 0.10–0.20 and localised one for x = 0.05. The increasing behaviour of frequency exponent (n) with temperature strongly suggests that the small polaron tunnelling is the dominant conduction mechanism for the studied samples except for x = 0.05 composition.

Notes

Acknowledgements

One of the authors (Truptimayee Sahu) acknowledges financial support from DST-INSPIRE Fellowship, New Delhi, India to perform this research. This author also acknowledges financial support through DRS-1 from UGC (No. 530/17/DRS/2009), New Delhi, India under SAP and the FIST program of DST (No. SR/FST/PSI-179/2012), New Delhi, India for research in the School of Physics, Sambalpur University, Odisha. The other author (B. Behera) acknowledges support from SERB under the DST Fast Track Scheme for Young Scientists (Project No. SR/FTP/PS-036/ 2011), New Delhi, India.

References

  1. 1.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  2. 2.
    D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313 (2003)CrossRefGoogle Scholar
  3. 3.
    T.P. Comyn, T. Stevenson, M. Al-Jawad, G. André, A.J. Bell, R. Cywinski, J. Magn. Magn. Mater. 323, 2533 (2011)CrossRefGoogle Scholar
  4. 4.
    W. Eerenstein, N.D. Mathur, J.F. Scott, J.F. Scott, Nature 442759, 759 (2006)CrossRefGoogle Scholar
  5. 5.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, O. Eriksson, Phys. Rev. B 74, 224412 (2006)CrossRefGoogle Scholar
  7. 7.
    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, Phys. Rev. B 77, 014110 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Wu, B. Zhang, X. Wang, Appl. Phys. A 111, 1017 (2013)CrossRefGoogle Scholar
  9. 9.
    X.D. Qi, M. Wei, Y. Lin, Q.X. Jia, D. Zhi, J. Dho, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 71913 (2005)CrossRefGoogle Scholar
  10. 10.
    Y. Lee, J. Wu, C. Lai, Appl. Phys. Lett. 88, 042903 (2006)CrossRefGoogle Scholar
  11. 11.
    C. Fanggao, S. Guilin, F. Kun, Q. Ping, Z. Qijun, J. Rare Earths 24, 273 (2006)CrossRefGoogle Scholar
  12. 12.
    G.L. Yuan, S.W. Or, H. Lai, W. Chan, Z.G. Liu, J. Appl. Phys. 101, 024106 (2007)CrossRefGoogle Scholar
  13. 13.
    Z. Hu, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X. Liu, B. Yu, X. Zhao, Solid State Commun. 150, 1088 (2010)CrossRefGoogle Scholar
  14. 14.
    S.W. Lee, K.B. Shim, K.H. Auh, P. Knott, Mater. Lett. 38, 356 (1999)CrossRefGoogle Scholar
  15. 15.
    R.T. Smith, G.D. Achenbach, R. Gerson, W.J. James, J. Appl. Phys. 39, 70 (1968)CrossRefGoogle Scholar
  16. 16.
    T.P. Comyn, T. Stevenson, M. Al-jawad, S.L. Turner, R.I. Smith, A.J. Bell, A.J. Bell, R. Cywinski, J. Appl. Phys. 105, 094108 (2009)CrossRefGoogle Scholar
  17. 17.
    V. Kothai, R.P. Babu, R. Ranjan, J. Appl. Phys. 114, 114102 (2013)CrossRefGoogle Scholar
  18. 18.
    J.R. Macdonald, Impedance Spectroscopy–Emphasizing Solid Materials and Systems, 2 edn. (Wiley, New York, 1987)Google Scholar
  19. 19.
    E.W. Powd, An Interactive Powder Diffraction Data Interpretation and Indexing Program, Ver.2.1, (School of Physical Science, Flindres University, South Bedford Park, 1989)Google Scholar
  20. 20.
    V. Fernandes, L. Fernando, I.A. Santos, D. Garcia, J. Eur. Ceram. Soc. 31, 2965 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Alguero, H. Amorin, C.M. Fernandez-Posada, O. Pena, P. Ramos, E. Vila, A. Castro, J. Adv. Dielectr. 6, 1630004 (2016)CrossRefGoogle Scholar
  22. 22.
    S. Liu, L. Huang, J. Li, S.O. Brien, J. Appl. Phys. 112, 014108 (2012)CrossRefGoogle Scholar
  23. 23.
    S.K. Pradhan, A. Kumar, A.N. Sinha, P. Kour, R. Pandey, P. Kumar, M. Kar, Dig. J. Nanomater. Biostruct. 12, 141 (2017)Google Scholar
  24. 24.
    S. Thakur, R. Rai, I. Bdikin, M.A. Valente, J. Mater. Res. 19, 1 (2016)CrossRefGoogle Scholar
  25. 25.
    K. Srinivas, P. Sarah, S.V. Suryanarayana, Bull. Mater. Sci. 26, 247 (2003)CrossRefGoogle Scholar
  26. 26.
    T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, J. Mater. Sci. 26, 3069 (2015)Google Scholar
  27. 27.
    Z. Imran, M.A. Rafiq, M. Ahmad, K. Rasool, S.S. Batool, M.M. Hasan, AIP Adv. 3, 0.32146 (2013)CrossRefGoogle Scholar
  28. 28.
    T. Sahu, B. Behera, J. Phys. Chem. Solids 113, 186 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Behera, B.N. Parida, P. Nayak, P.R. Das, J. Mater. Sci. 24, 1132 (2013)Google Scholar
  30. 30.
    Z. Lu, J.P. Bonnet, J. Ravez, J.M. Reau, P. Hagenmuller, J. Phys. Chem. Solid 53, 1 (1992)CrossRefGoogle Scholar
  31. 31.
    N.K. Mohanty, R.N. Pradhan, S.K. Satpathy, A.K. Behera, B. Behera, P. Nayak, J. Mater. Sci. 25, 117 (2014)Google Scholar
  32. 32.
    B. Yeum, ZSimpWin Version 2.00, (E Chem Software, Ann Arbor, 2001)Google Scholar
  33. 33.
    F.A. Kröger, H.J. Vink, Relations between concentrations of imperfections in crystalline solids. In: Solid State Physics, Seitz, F., Turnbull, D., (Eds.) vol 3, (Academic Press, New York, 1956), p. 307Google Scholar
  34. 34.
    R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)CrossRefGoogle Scholar
  35. 35.
    T. Sahu, A.K. Patra, B. Behera, J. Alloy. Compd. 695, 2273 (2017)CrossRefGoogle Scholar
  36. 36.
    A.N. Papathanassiou, F. Sokellis, J. Grammatikakis, Appl. Phys. Lett. 91, 122911 (2007)CrossRefGoogle Scholar
  37. 37.
    S.R. Elliot, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  38. 38.
    E.V. Gopalan, K.A. Malini, S. Saravanam, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D 41, 185005 (2008)CrossRefGoogle Scholar
  39. 39.
    A. Ghosh, Phys. Rev. B 41, 1479 (1990)CrossRefGoogle Scholar
  40. 40.
    K.A. Nath, K. Prasad, K.P. Chandra, A.R. Kulkarni, Adv. Mater. Res. 2, 119 (2013)CrossRefGoogle Scholar
  41. 41.
    T.M. Meaz, S.M. Attia, A.A. El Ata, J. Magn. Magn. Mater. 257, 296 (2003)CrossRefGoogle Scholar
  42. 42.
    N. Chakchouk, B. Louati, K. Guidara, Mater. Res. Bull. 99, 52 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Nasri, M. Meydiche, M. Gargouri, Ceram. Int. 42, 943 (2016)CrossRefGoogle Scholar
  44. 44.
    R.H. Chen, R.Y. Chang, S.C. Shern, J. Phys. Chem. Solid 63, 2069 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Material Research Laboratory, School of PhysicsSambalpur UniversitySambalpurIndia

Personalised recommendations