Fructose modified synthesis of ZnO nanoparticles and its application for removal of industrial pollutants from water

  • Gurjinder Singh
  • Jagpreet Singh
  • Sukhwinder Singh Jolly
  • Rohit Rawat
  • Deepak Kukkar
  • Sanjeev Kumar
  • Soumen BasuEmail author
  • Mohit RawatEmail author


This research work is an effort towards the purification of industrially polluted water for the savage of the environmental system. Optimized fructose modified ZnO nanoparticles were used as adsorbent as well as a photocatalyst for the removal of dyes from polluted water. Textile synthetic dyes were used as model pollutants. Structural and optical properties of the synthesized fructose modified ZnO nanoparticles were analyzed using XRD, SEM, TEM, and UV–Vis spectrophotometer. Wurtzite hexagonal phase with the quasi-spherical shape of diameter 14–40 nm of fructose modified ZnO nanoparticles were obtained by optimizing various reaction parameters. As compared to the bulk, fructose modified ZnO nanoparticles show a blue shift in the excitation absorption; confirming quantum confinement. The effect of pH, time, and initial dye concentration was investigated on the dye removal efficiency of the synthesized fructose modified ZnO nanoparticles. Through the kinetic study of dye removal, it has been observed that the adsorption and photodegradation phenomenon followed pseudo-first order kinetics.



This work was supported by lab facilities at Desh Bhagat University, Mandi Gobindgarh-Punjab, Thapar University, Patiala-Punjab, SGGSWU, Fatehgarh Sahib-Punjab and SAIF/CIL Panjab University, Chandigarh.


  1. 1.
    M. Asgher, H.N. Bhatti, M. Asharf, R.L. Legge, Biodegradation 19, 771–783 (2008)CrossRefGoogle Scholar
  2. 2.
    M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Adv. Colloid Interface Sci. 209, 112–172 (2014)CrossRefGoogle Scholar
  3. 3.
    R. Kant, Textile dyeing industry an environment hazard. Nat. Sci. 4, 22–26 (2012)Google Scholar
  4. 4.
    W.S.W. Ngah, L.C. Teong, M.A.K.M. Hanafiah, Carbohydr. Polym. 83, 1446–1456 (2011)CrossRefGoogle Scholar
  5. 5.
    K. Chennakesavulu, G.R. Reddy, S.S. Prasath, S. Supriya, S. Sivanesan, Adv. Mater. Lett. 6, 518–526 (2015)CrossRefGoogle Scholar
  6. 6.
    R.A. Damodar, S.J. You, S.H. Ou, Sep. Purif. Technol. 76, 64–71 (2010)CrossRefGoogle Scholar
  7. 7.
    M.N. Chong, B.J. Christopher, W.K. Chow, C. Saint, Water Res. 44, 2997–3027 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Guo, S. Yuan, W. Jiang, H. Yue, Z. Cui, B. Liang, RSC Adv. 6, 4090–4100 (2016)CrossRefGoogle Scholar
  9. 9.
    F. Liu, Y.H. Leung, A.B. Djurisic, A.M.C. Ng, W.K. Chan, J. Phys. Chem. C117, 12218–12228 (2013)Google Scholar
  10. 10.
    A. Azam, F. Ahmed, N. Arshi, M. Chaman, A.H. Naqvi, J. Alloys Compd. 496, 399–402 (2010)CrossRefGoogle Scholar
  11. 11.
    A.K. Radzimska, T. Jesionowski, Materials, 7, 2833–2881 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Yuan, D. Xiang, J.K. Yu, J. Ceram Process. Res. 14, 517–520 (2013)Google Scholar
  13. 13.
    M. Bagheri, A.R. Mahjou, B. Mehri RSC Adv. 4, 21757–21764 (2014)CrossRefGoogle Scholar
  14. 14.
    U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534–540 (2011)CrossRefGoogle Scholar
  15. 15.
    T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E.A. Zhukov, T. Yoa, Appl. Phys. Lett. 81, 1231–1235 (2002)CrossRefGoogle Scholar
  16. 16.
    Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, G.F. Neumark, Appl. Phys. Lett. 85, 3834–3835 (2004)Google Scholar
  17. 17.
    M.K. Debnath, S. Karmakar, Mater. Lett.
  18. 18.
    F. Davar, A. Majedi, A. Mirzaei, J. Am. Ceram. Soc. 98, 1739–1746 (2015). CrossRefGoogle Scholar
  19. 19.
    Z. Li, T. Yang, Biomed. Eng.-Front. Challenges 319–334 (2011)Google Scholar
  20. 20.
    S. Panigrahi, S. Kundu, S.K. Ghosh, S. Nath, T. Pal, J. Nanopart. Res. 6, 411–414 (2004)CrossRefGoogle Scholar
  21. 21.
    C. Pettegrew, Z. Dong, M.Z. Muhi, S. Pease, M. AbdulMottaleb, M.R. Islam, ISRN Nanotechnol. (2014). Google Scholar
  22. 22.
    A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Indian J. Mater. Sci. (2015). Google Scholar
  23. 23.
    A. Stephen, S. Dhanavel, E.A.K. Nivethaa, V. Narayanan, Int. J. Chem. Tech. Res. 6, 1880–1882 (2014)Google Scholar
  24. 24.
    M.S. Gowda, P.S.K. Kumar, R.M. Kulkarni, Int. Res. J. Environ. Sci. 3, 20–26 (2014)Google Scholar
  25. 25.
    N.P. Mohabansi, V.B. Patil, N. Yenkie, Rasayan J. Chem. 4, 814–819 (2011)Google Scholar
  26. 26.
    R.D.C. Soltani, A. Rezaee, R. Rezaee, M. Safari, H. Hashemi, J. Adv. Environ. Health Res. 3, 8–14 (2015)Google Scholar
  27. 27.
    B. Malakar, A.T. Miah, C. Kalita, P. Saikia, Chem. Sci. Trans. 4, 788–798 (2015)Google Scholar
  28. 28.
    Sh. Aghabeygi, M. Zare-Dehnavi, Int. J. Nano Dimension. 6, 297–304 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gurjinder Singh
    • 1
  • Jagpreet Singh
    • 2
  • Sukhwinder Singh Jolly
    • 3
  • Rohit Rawat
    • 4
  • Deepak Kukkar
    • 2
  • Sanjeev Kumar
    • 5
  • Soumen Basu
    • 6
    Email author
  • Mohit Rawat
    • 2
    Email author
  1. 1.Department of Electronics & Communication EngineeringSri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  2. 2.Department of NanotechnologySri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  3. 3.Department of Mechanical EngineeringSri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  4. 4.Department of Mechanical EngineeringNational Institute of TechnologyKurukshetraIndia
  5. 5.Department of PhysicsSri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  6. 6.Department of Chemistry and BiochemistryThapar UniversityPatialaIndia

Personalised recommendations