Effect of mechanical mixing method of preparation of polyaniline-transition metal oxide composites on DC conductivity and humidity sensing response

  • R. Megha
  • Y. T. Ravikiran
  • B. Chethan
  • H. G. Raj Prakash
  • S. C. Vijaya Kumari
  • S. Thomas
Article
  • 40 Downloads

Abstract

In the present work, optimized polyaniline-titanium dioxide (PANI-TiO2) and polyaniline-yttrium oxide (PANI-Y2O3) composites were prepared by mechanical mixing of chemically synthesized PANI with TiO2 and Y2O3 transition metal oxides respectively. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed relative decrease in depth of delocalization band of PANI in the composites as compared to that in PANI. The X-ray diffraction (XRD) studies confirmed decrease in degree of crystallinity and increase in inter-chain separation of PANI in the composites as compared to those of PANI. The scanning electron microscopy (SEM) images confirmed relatively more agglomerated and porous granular morphology of the composites as compared to that of PANI. Decrease in DC conductivity of the composites as compared to that of PANI confirmed experimentally and then supported theoretically by one dimensional variable ranging hopping (VRH) model. The PANI-TiO2 and PANI-Y2O3 composites, when studied for their humidity sensing performance, recorded remarkable maximum sensing response of 94 and 96% respectively at 97% RH as compared to 40% of PANI. The response and the recovery time of PANI-TiO2 composite were 95 and 122 s respectively and those of PANI-Y2O3 composite were 50 and 80 s respectively. Humidity sensing stability of the composites tested for a period of 1 month and confirmed.

Notes

Acknowledgements

The authors are thankful to University the Grants Commission, New Delhi, for their financial support, provided under major research project (41-917/2012 (SR) dated: 23/07/2012) to carry out this work. This paper is a collaborative effort between Government Science College, Chitradurga and Mahatma Gandhi University, Kottayam-686 560, India. The authors also wish to acknowledge SAIF, Cochin, for providing facilities for structural characterizations of the samples.

References

  1. 1.
    R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, S. Thomas, Appl. Phys. A Mater. Sci. Process 123, 245 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Megha, S. Kotresh, Y.T. Ravikiran, C.H.V.V. Ramana, S.C. Vijaya Kumari, S. Thomas, Compos. Interfaces 24, 55 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Kotresh, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Raj Prakash, S. Thomas, Adv. Mater. Lett. 6, 641 (2015)CrossRefGoogle Scholar
  4. 4.
    B.K. Sharma, N. Khare, S.K. Dhawan, H.C. Gupta, J. Alloys Compd. 477, 370 (2009)CrossRefGoogle Scholar
  5. 5.
    S. Kotresh, Y.T. Ravikiran, S.C. Vijaya Kumari, T. Chandrasekhar, Ch.V.V. Raman, S. Thomas, Mater. Manufact. Process 31, 1976 (2016)CrossRefGoogle Scholar
  6. 6.
    R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, T. Chandrasekhar, S. Thomas, Polym. Comp.  https://doi.org/10.1002/pc.24375
  7. 7.
    S. Kotresh, Y.T. Ravikiran, H.G. Raj Prakash, C.H.V.V. Ramana, S.C. Vijayakumari, S. Thomas, Cellulose 23, 3177 (2016)CrossRefGoogle Scholar
  8. 8.
    D.S. Dhawale, D.P. Dubal, V.S. Jamadade, R.R. Salunkhe, S.S. Joshi, C.D. Lokhande, Sensors Actuators, B Chem. 145, 205 (2010)CrossRefGoogle Scholar
  9. 9.
    R. Borah, S. Banerjee, A. Kumar, Synth. Met. 197, 225 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Wakabayashi, J. Phys. Condens. Matter. 23, 483001 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, K.K. Zadeh, Prog. Mater. Sci. 58, 1443 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Faisal, S. Khasim, Polym. Sci. Ser. A 56, 366 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Korotcenkov, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 139, 1 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Aghazadeh, M. Hosseinnifard, M.H. Peyrovi, B. Sabour, J. Rare Earths 31, 281 (2013)CrossRefGoogle Scholar
  15. 15.
    L. Tang, Y. Deng, G. Zeng, W. Hu, J. Wang, Y. Zhou, J. Wang, J. Tang, W. Fang, J. Alloys Compd. 662, 516 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Busani, R.A.B. Devine, Semicond. Sci. Technol. 20, 870 (2005)CrossRefGoogle Scholar
  17. 17.
    S.C. Nagaraju, A.S. Roy, G. Ramgopal, Measurement 60, 214 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Faisal, S. Khasim, E. Conductivity, Dielectric behavior and Emi shielding effectiveness of polyaniline-yttrium oxide composites. Bull. Korean Chem. Soc. 34, 99–106 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Mostafaei, A. Zolriasatein, Prog. Nat. Sci. Mater. Int. 22, 273 (2012)CrossRefGoogle Scholar
  20. 20.
    S.C. Nagaraju, A.S. Roy, A.L. Latha, G. Ramgopal, Ferroelectr. Lett. Sect. 43, 96 (2016)CrossRefGoogle Scholar
  21. 21.
    D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Carbon. 95, 460 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Dhingra, S. Shrivastava, P.S. Kumar, S. Annapoorni, Compos. Part B Eng. 45, 1515 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Huang, T. Yang, Y. Kang, Y. Wang, S. Wang, J. Nat. Gas Chem. 20, 515 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Zheng, N.M. Ncube, K. Raju, N. Mphahlele, M. Mathe, Springerplus. 5, 630 (2016)CrossRefGoogle Scholar
  25. 25.
    B.I. Nandapure, S.B. Kondawar, M.Y. Salunkhe, A.I. Nandapure, Adv. Mater. Lett. 4, 134 (2013)CrossRefGoogle Scholar
  26. 26.
    S.S. Umare, M.M. Huque, M.C. Gupta, S.G. Viswanath, J. Macromol. Sci. Part A. 32, 281 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Khalid, M.A. Tumelero, V.C. Zoldan, C.C. Pla Cid, D.F. Franceschini, R.A. Timm, L.T. Kubota, S.A. Moshkalev, A.A. Pasa, RSC Adv. 4, 34168 (2014)CrossRefGoogle Scholar
  28. 28.
    J.P.B. Ontolan Jr., P.A.M. Alcantara, R.M. Vequizo, M.K. Odarve, B.R.B. Sambo, Phys. Status Solidi. 12, 580 (2015)CrossRefGoogle Scholar
  29. 29.
    N. VijayaKumar, E. Subramanian, D.P. Padiyan, Synth. Met. 162, 126 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Nasirian, H.M. Moghaddam, Polymer 55, 1866 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Khairy, Synth. Met. 189, 34 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Quillard, G. Louarnm, S. Lefrant, A.G. Macdiarmid, Phys. Rev. B Condens. Matter. 50, 12496 (1994)CrossRefGoogle Scholar
  33. 33.
    S. Srivastava, S. Kumar, V.N. Singhh, M. Singh, Y.K. Vijay, Int. J. Hydrogen Energy. 36, 6343 (2011)CrossRefGoogle Scholar
  34. 34.
    R.M. Khafagy, J. Alloys Compd. 509, 9849 (2011)CrossRefGoogle Scholar
  35. 35.
    T. Pandiyarajan, R.V. Mangalaraja, B. Karthikeyan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 147, 280 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Bhadra, N.H. Kim, K.Y. Rhee, J.H. Lee, Polym. Int. 58, 1173 (2009)CrossRefGoogle Scholar
  37. 37.
    S. Chapi, S. Raghu, H. Devendrappa, Ionics. 22, 803 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Sultana, M.Z. Rafiuddin, K. Khan, Umar, J. Alloys Compd. 535, 44 (2012)CrossRefGoogle Scholar
  39. 39.
    D. Wei, R. Dave, R. Pfeffer, J. Nanopart. Res. 4, 21 (2002)CrossRefGoogle Scholar
  40. 40.
    V. Jeseentharani, L. Reginamary, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, J. Mater. Sci. 47, 3529 (2012)CrossRefGoogle Scholar
  41. 41.
    B. Nandapure, S. Kondawar, M. Salunkhe, A. Nandapure, J. Compos. Mater. 47, 559 (2012)CrossRefGoogle Scholar
  42. 42.
    J.G. Wang, L.X. Zhang, J. Yin, L.X. Zhao, L.J. Bie, Layered K(1.5Eu0.5)Ta3O10 for humidity sensor. Measurement 82, 151 (2016)CrossRefGoogle Scholar
  43. 43.
    V.R. Khadse, S. Thakur, K.R. Patil, P. Patil, Sens. Actuators B Chem. 203, 10 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. Megha
    • 1
  • Y. T. Ravikiran
    • 1
  • B. Chethan
    • 2
  • H. G. Raj Prakash
    • 2
  • S. C. Vijaya Kumari
    • 3
  • S. Thomas
    • 4
  1. 1.Department of PG Studies and Research in PhysicsGovernment Science CollegeChitradurgaIndia
  2. 2.Department of PhysicsJNN College of EngineeringShivamoggaIndia
  3. 3.Department of PhysicsSJM College of Arts, Science and CommerceChitradurgaIndia
  4. 4.International and Inter University Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia

Personalised recommendations