Effect of micro-defects and Pb-loss on electrical and optical properties of PLZT ceramic

Article
  • 71 Downloads

Abstract

Ceramic Pb0.97La0.02Zr0.52Ti0.48O3 has been prepared by sol–gel synthesis followed by atmospheric sintering. Sintering has been done at temperatures between 1150 and 1300 °C for the duration of 20–180 min. Comparative studies on microstructure, ferroelectric properties, dielectric response, piezoelectric coefficient and strain behavior have been carried out on the basis of sintering condition to find out the missing link between several earlier reports and establish the optimum condition for sintering. The optimum sintering parameters, which balance the grain growth, defects in microstructure and Pb-loss are found. Bipolar and unipolar strains are computed from dielectric constant, piezoelectric coefficients and polarization. It has been observed that sintering at higher temperatures for longer duration increases grain size; which is desirable but simultaneously develops defects in microstructure and increases Pb-loss. Quantitative analysis on Pb-loss has been examined by energy dispersive X-ray spectroscopy (EDS). Pb-loss creates Pb and O vacancies, which affect the optical properties. A systematic band gap decrement and increasing defect induced photoluminescence (PL) emissions are observed with increasing Pb-loss. A band gap change from 3.414 eV (sintering at 1150 °C for 20 min) to 3.182 eV (sintering at 1300 °C for 180 min) is observed while the corresponding Pb-loss is 1.5–23.7%. The band gap decrement follows a nearly linear relation with Pb-loss.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J. Electroceram. 29, 71–93 (2012).  https://doi.org/10.1007/s10832-012-9742-3 CrossRefGoogle Scholar
  2. 2.
    B. Jaffe, H.L.C. Jaffé, W.R. Cook, Piezoelectric Ceramics (Academic Press, London, 1971)Google Scholar
  3. 3.
    M. Dawber, K.M. Rabe, J.F. Scott, Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).  https://doi.org/10.1103/RevModPhys.77.1083 CrossRefGoogle Scholar
  4. 4.
    L. Gorjan, T. Lusiola, D. Scharf, F. Clemens, Kinetics and equilibrium of Eco-debinding of PZT ceramics shaped by thermoplastic extrusion. J. Eur. Ceram. Soc. 37, 5273–5280 (2017).  https://doi.org/10.1016/j.jeurceramsoc.2017.04.063 CrossRefGoogle Scholar
  5. 5.
    M. Promsawat, M. Deluca, S. Kampoosiri, B. Marungsri, S. Pojprapai, Electrical fatigue behavior of lead zirconate titanate ceramic under elevated temperatures. J. Eur. Ceram. Soc. 37, 2047–2055 (2017).  https://doi.org/10.1016/j.jeurceramsoc.2016.12.037 CrossRefGoogle Scholar
  6. 6.
    M. Zheng, Y. Hou, X. Yan, M. Zhu, The structural origin of enhanced energy harvesting performance in piezoelectric perovskite. J. Eur. Ceram. Soc. (2017).  https://doi.org/10.1016/j.jeurceramsoc.2017.09.001 Google Scholar
  7. 7.
    T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007).  https://doi.org/10.1007/s10832-007-9047-0 CrossRefGoogle Scholar
  8. 8.
    P.K. Panda, B. Sahoo, PZT to lead free piezo ceramics: a review. Ferroelectrics 474, 128–143 (2015).  https://doi.org/10.1080/00150193.2015.997146 CrossRefGoogle Scholar
  9. 9.
    H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y. Wang, L. Guo, W. Tai, H. Wei, Lead-free BaTiO3 -Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc. 37, 3303–3311 (2017).  https://doi.org/10.1016/j.jeurceramsoc.2017.03.071 CrossRefGoogle Scholar
  10. 10.
    E. Ringgaard, T. Wurlitzer, Lead-free piezoceramics based on alkali niobates. J. Eur. Ceram. Soc. 25, 2701–2706 (2005).  https://doi.org/10.1016/j.jeurceramsoc.2005.03.126 CrossRefGoogle Scholar
  11. 11.
    E. Sapper, A. Gassmann, L. Gjødvad, W. Jo, T. Granzow, J. Rödel, Cycling stability of lead-free BNT–8BT and BNT–6BT–3KNN multilayer actuators and bulk ceramics. J. Eur. Ceram. Soc. 34, 653–661 (2014).  https://doi.org/10.1016/j.jeurceramsoc.2013.09.006 CrossRefGoogle Scholar
  12. 12.
    K.S. Srikanth, R. Vaish, Enhanced electrocaloric, pyroelectric and energy storage performance of BaCexTi1–xO3 ceramics. J. Eur. Ceram. Soc. 37, 3927–3933 (2017).  https://doi.org/10.1016/j.jeurceramsoc.2017.04.058 CrossRefGoogle Scholar
  13. 13.
    T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, D. Wang, S. Taylor, A. Genovese, Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 9, 3495–3520 (2016).  https://doi.org/10.1039/c6ee02429g CrossRefGoogle Scholar
  14. 14.
    B. Jaffe, R.S. Roth, S. Marzullo, Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: tin oxide and lead titanate-lead hafnate. J. Res. Natl. Bur. Stand. 55, 239–254 (1955)CrossRefGoogle Scholar
  15. 15.
    H.D. Chen, K.R. Udayakumar, C.J. Gaskey, L.E. Cross, Electrical properties’ maxima in thin films of the lead zirconate–lead titanate solid solution system. Appl. Phys. Lett. 67, 3411–3414 (1995).  https://doi.org/10.1063/1.115263 CrossRefGoogle Scholar
  16. 16.
    A. Bouzid, E.M. Bourim, M. Gabbay, G. Fantozzi, PZT phase diagram determination by measurement of elastic moduli. J. Eur. Ceram. Soc. 25, 3213–3221 (2005).  https://doi.org/10.1016/j.jeurceramsoc.2004.07.018 CrossRefGoogle Scholar
  17. 17.
    D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998).  https://doi.org/10.1088/0034-4885/61/9/002 CrossRefGoogle Scholar
  18. 18.
    S.R. Shannigrahi, F.E.H. Tay, K. Yao, R.N.P. Choudhary, Effect of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) ion substitutions on the microstructural and electrical properties of sol-gel grown PZT ceramics. J. Eur. Ceram. Soc. 24, 163–170 (2004).  https://doi.org/10.1016/s0955-2219(03)00316-9 CrossRefGoogle Scholar
  19. 19.
    M. Prabu, I.B. Shameem Banu, S. Gobalakrishnan, M. Chavali, Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol–gel method. J. Alloys Compd. 551, 200–207 (2013).  https://doi.org/10.1016/j.jallcom.2012.09.095 CrossRefGoogle Scholar
  20. 20.
    M. Narayanan, S. Tong, S. Liu, B. Ma, U. Balachandran, Estimation of intrinsic contribution to dielectric response of Pb0.92La0.08Zr0.52Ti0.48O3 thin films at low frequencies using high bias fields. Appl. Phys. Lett. 102, 062906-1–062906-4 (2013).  https://doi.org/10.1063/1.4792529 CrossRefGoogle Scholar
  21. 21.
    Q. Tan, Z. Xu, D. Viehland, Dependence of structure-property relations on substituent distributions in lead zirconate titanate. Philos. Mag. B 80, 1585–1597 (2009).  https://doi.org/10.1080/13642810008208586 CrossRefGoogle Scholar
  22. 22.
    Y.T. Kwon, I.M. Lee, W.I. Lee, C.J. Kim, I.K. Yoo, Effect of sol-gel precursors on the grain structure of PZT thin films. Mater. Res. Bull. 34, 749–760 (1999).  https://doi.org/10.1016/s0025-5408(99)00068-9 CrossRefGoogle Scholar
  23. 23.
    Y. Zhao, X. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1–3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014).  https://doi.org/10.1021/am502415z CrossRefGoogle Scholar
  24. 24.
    J. Parui, S.B. Krupanidhi, Enhancement of charge and energy storage in sol-gel derived pure and La-modified PbZrO3 thin films. Appl. Phys. Lett. 92, 192901 (2008).  https://doi.org/10.1063/1.2928230 CrossRefGoogle Scholar
  25. 25.
    H. Basantakumar Sharma, H.N.K. Sarma, A. Mansingh, Ferroelectric and dielectric properties of sol-gel processed barium titanate ceramics and thin films. J. Mater. Sci. 34, 1385–1390 (1999).  https://doi.org/10.1023/a:1004578905297 CrossRefGoogle Scholar
  26. 26.
    R.P.S.M. Lobo, N.D.S. Mohallem, R.L. Moreira, Grain-size effects on diffuse phase transitions of sol-gel prepared barium titanate ceramics. J. Am. Ceram. Soc. 78, 1343–1346 (1995).  https://doi.org/10.1111/j.1151-2916.1995.tb08492.x CrossRefGoogle Scholar
  27. 27.
    A. Wu, P.M. Vilarinho, I.M.M. Salvado, J.L. Baptista, Sol-gel preparation of lead zirconate titanate powders and ceramics: effect of alkoxide stabilizers and lead precursors. J. Am. Ceram. Soc. 83, 1379–1385 (2000).  https://doi.org/10.1111/j.1151-2916.2000.tb01397.x CrossRefGoogle Scholar
  28. 28.
    J. Íñiguez, D. Vanderbilt, L. Bellaiche, First-principles study of (BiScO3)1–x–(PbTiO3)x piezoelectric alloys. Phys. Rev. B. 67, 224107-1–224107-6 (2003).  https://doi.org/10.1103/PhysRevB.67.224107 CrossRefGoogle Scholar
  29. 29.
    W. Qiu, H.H. Hng, Effects of addition of Pb(Y1/2Nb1/2)O3 (PYN) on microstructure and piezoelectric properties of Pb(Zr0.53Ti0.47)O3. Ceram. Int. 30, 2171–2176 (2004).  https://doi.org/10.1016/j.ceramint.2003.12.004 CrossRefGoogle Scholar
  30. 30.
    C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (2005).  https://doi.org/10.1111/j.1151-2916.1998.tb02389.x CrossRefGoogle Scholar
  31. 31.
    S. Yokoyama, Y. Honda, H. Morioka, T. Oikawa, H. Funakubo, T. Iijima, H. Matsuda, K. Saito, Large piezoelectric response in (111)-oriented epitaxial Pb(Zr,Ti)O3 films consisting of mixed phases with rhombohedral and tetragonal symmetry. Appl. Phys. Lett. 83, 2408–2410 (2003).  https://doi.org/10.1063/1.1611273 CrossRefGoogle Scholar
  32. 32.
    D. Mukherjee, M. Hordagoda, D. Pesquera, D. Ghosh, J.L. Jones, P. Mukherejee, S. Witanachchi, Enhanced ferroelectric polarization in epitaxial (Pb1–xLax)(Zr0.52Ti0.48)O3 thin films due to low La doping. Phys. Rev. B. 95, 174304-1–174304-11 (2017).  https://doi.org/10.1103/PhysRevB.95.174304 Google Scholar
  33. 33.
    W.-D. Yang, PZT/PLZT ceramics prepared by hydrolysis and condensation of acetate precursors. Ceram. Int. 27, 373–384 (2001).  https://doi.org/10.1016/s0272-8842(00)00091-2 CrossRefGoogle Scholar
  34. 34.
    B.-S. Chiou, J.N. Kuo, H.T. Dai, The preparation of PLZT ceramics from a sol-gel process. J. Electron. Mater. 19, 393–397 (1990).  https://doi.org/10.1007/bf02651302 CrossRefGoogle Scholar
  35. 35.
    Y. Lin, C. Andrews, H.A. Sodano, Enhanced piezoelectric properties of lead zirconate titanate sol-gel derived ceramics using single crystal PbZr0.52Ti0.48O3 cubes. J. Appl. Phys. 108, 064108-1–064108-6 (2010).  https://doi.org/10.1063/1.3481454 Google Scholar
  36. 36.
    S. Shah, M.S.R. Rao, Preparation and dielectric study of high-quality PLZT x/65/35 (x = 6, 7, 8) ferroelectric ceramics. Appl. Phys. A 71, 65–69 (2000)Google Scholar
  37. 37.
    K. Kitaoka, H. Kozuka, T. Yoko, Preparation of lead lanthanum zirconate titanate (PLZT, (Pb,La)(Zr,Ti)O3) fibers by sol-gel method. J. Am. Ceram. Soc. 81, 1189–1196 (2005).  https://doi.org/10.1111/j.1151-2916.1998.tb02467.x CrossRefGoogle Scholar
  38. 38.
    K. Kakegawa, O. Matsunaga, T. Kato, Y. Sasaki, Compositional change and compositional fluctuation in Pb(Zr,Ti)O3 containing excess PbO. J. Am. Ceram. Soc. 78, 1071–1075 (1995).  https://doi.org/10.1111/j.1151-2916.1995.tb08439.x CrossRefGoogle Scholar
  39. 39.
    S.R. Shannigrahi, R.N.P. Choudhary, H.N. Acharya, Effect of Er doping on structural and dielectric properties of sol-gel prepared PZT ceramics. Mater. Res. Bull. 34, 1875–1884 (1999).  https://doi.org/10.1016/s0025-5408(99)00190-7 CrossRefGoogle Scholar
  40. 40.
    S. Samanta, M. Muralidhar, V. Sankaranarayanan, K. Sethupathi, M.S. Ramachandra Rao, M. Murakami, Band gap reduction and redshift of lattice vibrational spectra in Nb and Fe co-doped PLZT. J. Mater. Sci. 52, 13012–13022 (2017).  https://doi.org/10.1007/s10853-017-1425-7 CrossRefGoogle Scholar
  41. 41.
    S. Samanta, V. Sankaranarayanan, K. Sethupathi, Energy-dispersive X-ray spectroscopy (EDS) on PLZT sintered at different temperatures (1150 °C–1300 °C) for different duration (20 min–180 min). Mendeley Data (2017).  https://doi.org/10.17632/mxc46k2jgx.1 Google Scholar
  42. 42.
    N.J. Donnelly, C.A. Randall, Impedance spectroscopy of PZT ceramics–measuring diffusion coefficients, mixed conduction, and Pb loss. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1883–1887 (2012).  https://doi.org/10.1109/TUFFC.2012.2401 CrossRefGoogle Scholar
  43. 43.
    K. Wang, F.-Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J.-F. Li, J. Rödel, Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv. Funct. Mater. 23, 4079–4086 (2013).  https://doi.org/10.1002/adfm.201203754 CrossRefGoogle Scholar
  44. 44.
    A.J. Bell, Factors influencing the piezoelectric behaviour of PZT and other “morphotropic phase boundary” ferroelectrics. J. Mater. Sci. 41, 13–25 (2006).  https://doi.org/10.1007/s10853-005-5913-9 CrossRefGoogle Scholar
  45. 45.
    M. Otonicar, A. Reichmann, K. Reichmann, Electric field-induced changes of domain structure and properties in La-doped PZT—From ferroelectrics towards relaxors. J. Eur. Ceram. Soc. 36, 2495–2504 (2016).  https://doi.org/10.1016/j.jeurceramsoc.2016.03.004 CrossRefGoogle Scholar
  46. 46.
    M. Ghasemifard, S.M. Hosseini, A. Khorsand Zak, G.H. Khorrami, Microstructural and optical characterization of PZT nanopowder prepared at low temperature. Physica E 41, 418–422 (2009).  https://doi.org/10.1016/j.physe.2008.09.017 CrossRefGoogle Scholar
  47. 47.
    M.C. Rodríguez-Aranda, F. Calderón-Piñar, M.A. Hernández-Landaverde, J. Heiras, R. Zamorano-Ulloa, D. Ramírez-Rosales, J.M. Yáñez-Limón, Photoluminescence of sol–gel synthesized PZT powders. J. Lumin. 179, 280–286 (2016).  https://doi.org/10.1016/j.jlumin.2016.07.030 CrossRefGoogle Scholar
  48. 48.
    G.F. Teixeira, M.A. Zaghete, G. Gasparotto, M.G.S. Costa, J.W.M. Espinosa, E. Longo, J.A. Varela, Photoluminescence properties and synthesis of a PZT mesostructure obtained by the microwave-assisted hydrothermal method. J. Alloys Compd. 512, 124–127 (2012).  https://doi.org/10.1016/j.jallcom.2011.09.036 CrossRefGoogle Scholar
  49. 49.
    M.S. Silva, M. Cilense, E. Orhan, M.S. Góes, M.A.C. Machado, L.P.S. Santos, C.O. Paiva-Santos, E. Longo, J.A. Varela, M.A. Zaghete, P.S. Pizani, The nature of the photoluminescence in amorphized PZT. J. Lumin. 111, 205–213 (2005).  https://doi.org/10.1016/j.jlumin.2004.08.045 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology Madras (IITM)ChennaiIndia

Personalised recommendations