Low loss and temperature stable microwave dielectric ceramics in (1 − x)Li2TiO3–xLi2Mg3TiO6 (0.1 ≤ x ≤ 0.5) system

  • Tianyi Xie
  • Liang Hao
  • Liangzhu Zhang
  • Haishen Ren
  • Mingzhao Dang
  • Shaohu Jiang
  • Xiangyu Zhao
  • Fancheng Meng
  • Huixing Lin
Article
  • 51 Downloads

Abstract

The (1 − x)Li2TiO3–xLi2Mg3TiO6 (x = 0.1, 0.15, 0.2, 0.3, 0.4, 0.5) ceramics system was fabricated by solid-state synthesis. Test results of X-ray diffraction and electron diffraction spectrum show that all ceramic samples only contain Li2TO3 and Li2Mg3TiO6 phase. Scanning electron microscope shows that pores were found in crystal grain due to Li volatilization in high temperature (> 1000 °C). With the rise proportion of Li2Mg3TiO6 in ceramics, dielectric constant (ɛr) decreases from 19.55 to 14.53, quality factor (Q×f) increases from 102,800 to 126,000 GHz and temperature coefficient (τf) decreases from + 15.9 to − 30.08 ppm/°C. High performance microwave dielectric properties of ɛr = 18.5, Q×f = 108,000 GHz, τf = 4.2 ppm/°C were obtained at 1390 °C for 0.85Li2TiO3–0.15Li2Mg3TiO6 ceramics. To suppress Li volatilization, LiF, a low temperature melting addition, was added to 0.85Li2TiO3–0.15Li2Mg3TiO6 ceramics. LiF effective lowers sintering temperature from 1390 to 1175 °C due to LiF liquid-phase sintering and restricts Li evaporation, and a well-developed grain morphology and excellent dielectric properties (ɛr = 18.5, Q×f = 87,000 GHz, τf = − 18 ppm/°C) was obtained which hold promise in 4G tele-communication applications.

References

  1. 1.
    M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392–412 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Tohdo, K. Kakimoto, H. Ohsato et al., J. Eur. Ceram. Soc. 26, 2039–2043 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Makimoto, S. Yamashita, Springer Series in Advanced Microelectronics. Springer Science & Business Media, Berlin (2001)Google Scholar
  4. 4.
    Z. Fu, P. Liu, J. Ma et al., Mater. Lett. 164, 436–439 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Templeton, X. Wang, S.J. Penn et al., J. Am. Ceram. Soc. 83, 95–100 (2000)CrossRefGoogle Scholar
  6. 6.
    L. Yao, T. Qiu et al., Mater. Electron. 25, 4046–4050 (2014)CrossRefGoogle Scholar
  7. 7.
    R.C. Kell, A.C. Greenham, G.C.E. Olds, J. Am. Ceram. Soc. 56(7), 352–354 (1973)CrossRefGoogle Scholar
  8. 8.
    G. Dou, D. Zhou, M. Guo et al., J. Alloys Compd. 513, 466–473 (2012)CrossRefGoogle Scholar
  9. 9.
    Y.-B. Chen, J. Alloys Compd. 478, 657–660 (2009)CrossRefGoogle Scholar
  10. 10.
    S.H. Yoon, G.-K. Choi et al., J. Eur. Ceram. Soc. 27, 3087–3091 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Xiang, L. Fang et al., J. Eur. Ceram. Soc. 37, 625–629 (2017)CrossRefGoogle Scholar
  12. 12.
    P.L. Wise, I.M. Reaney, W.E. Lee et al., J. Eur. Ceram. Soc. 21(10), 1723–1726 (2001)CrossRefGoogle Scholar
  13. 13.
    J. Ma, Z. Fu, P. Liu et al., J. Alloys Compd. 709, 299–303 (2017)CrossRefGoogle Scholar
  14. 14.
    J.J. Bian, Y.F. Dong, J. Eur. Ceram. 30, 325–330 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Zhang, H. Su et al., Ceram. Int. 42, 15242–15246 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Iida, J. Am. Ceram. Soc. 43(3), 171–172 (1960)CrossRefGoogle Scholar
  17. 17.
    K. Wakino, T. Okada et al., J. Am. Ceram. Soc. 76(10), 2588–2594 (1993)CrossRefGoogle Scholar
  18. 18.
    R. Shannon, J. Appl. Phys. 73, 348–366 (1993)CrossRefGoogle Scholar
  19. 19.
    H. Tamura, J. Eur. Ceram. Soc. 26, 1775–1780 (2006)CrossRefGoogle Scholar
  20. 20.
    C.L. Huang, M.H. Weng, J. Mater. Res. Bull. 36(15), 2741–2750 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tianyi Xie
    • 1
  • Liang Hao
    • 1
  • Liangzhu Zhang
    • 1
  • Haishen Ren
    • 1
  • Mingzhao Dang
    • 1
  • Shaohu Jiang
    • 1
  • Xiangyu Zhao
    • 1
  • Fancheng Meng
    • 1
  • Huixing Lin
    • 1
  1. 1.Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations