Sonochemical-assisted synthesis and characterization of CeO2 nanoparticles and its photocatalytic properties

Article
  • 61 Downloads

Abstract

In the present study, cerium oxide (CeO2) nanoparticles were prepared through sonochemical-assisted method, using (NH4)2Ce(NO3)6, hydrazine and ethylenediamine as precursors. Also, the effects of concentration of precursors as well as reaction time on the morphology and size of nanoparticles were investigated. The synthesized CeO2 nanoparticles were characterized by X-ray diffraction patterns, energy-dispersive X-ray spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and diffuse reflectance spectroscopy. The results indicate that the estimated particle size of synthesized CeO2 nanoparticles is about 20–30 nm. Furthermore, photocatalytic activities of CeO2 nanoparticles were investigated by degradation of methylene blue under UV-light irradiation.

References

  1. 1.
    M.T. Taghizadeh, M. Vatanparast, RSC Adv. 6, 56819 (2016)CrossRefGoogle Scholar
  2. 2.
    M.T. Taghizadeh, M. Vatanparast, J. Colloid Interface Sci. 483, 1 (2016)CrossRefGoogle Scholar
  3. 3.
    M.T. Taghizadeh, M. Vatanparast, J. Mater. Sci. Mater. Electron. 28, 778 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj, R.T. Rajendra, Kumar, Mater. Sci. Semicond. Process. 26, 218 (2014)CrossRefGoogle Scholar
  5. 5.
    M.A. Subhan, N. Uddin, P. Sarker, A.K. Azad, K. Begum, Spectrochim. Acta Part A 149, 839 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Salavati-Niasari, M.R. Loghman-Estarki, F. Davar, Inorg. Chim. Acta 362, 3677 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Vatanparast, M.T. Taghizadeh, J. Mater. Sci. Mater. Electron. 27, 54 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Wang, F. Meng, Mater. Res. Bull. 48, 3492 (2013)CrossRefGoogle Scholar
  9. 9.
    F. Lu, F. Meng, L. Wang, J. Luo, Y. Sang, Mater. Lett. 73, 154 (2012)CrossRefGoogle Scholar
  10. 10.
    R.K. Singhal, S. Kumar, A. Samariya, M. Dhawan, S.C. Sharma, Y.T. Xing, Mater. Chem. Phys. 132, 534 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Liu, M. Xie, X. Guo, W. Ji, Mater. Lett. 105, 192 (2013)CrossRefGoogle Scholar
  12. 12.
    N. Izu, W. Shin, N. Murayama, S. Kanzaki, Sens. Actuators B 87, 95 (2002)CrossRefGoogle Scholar
  13. 13.
    S.-H. Lee, Z. Lu, S. Babu, E. Matijević, J. Mater. Res. 17, 2744 (2002)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, Y. Liu, K. Wang, Y. Li, M. Gao, H. Pan, ChemSusChem 8, 4180 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Tsunekawa, R. Sahara, Y. Kawazoe, A. Kasuya, Mater. Trans. JIM 41, 1104 (2000)CrossRefGoogle Scholar
  16. 16.
    T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 116, 5987 (2016)CrossRefGoogle Scholar
  17. 17.
    A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, K.J. Balkus, ACS Catal. 4, 577 (2014)CrossRefGoogle Scholar
  18. 18.
    P.K. Tiwari, S. Basu, Ionics 23, 2571 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Masalov, O. Viagin, P. Maksimchuk, V. Seminko, I. Bespalova, A. Aslanov, Y. Malyukin, Y. Zorenko, J. Lumin. 145, 61 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Meng, C. Zhang, Z. Fan, J. Gong, A. Li, Z. Ding, H. Tang, M. Zhang, G. Wu, J. Alloy. Compd. 647, 1013 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, M. Salavati-Niasari, J. Ind. Eng. Chem. 21, 1301 (2015)CrossRefGoogle Scholar
  22. 22.
    N.K. Renuka, J. Alloy. Compd. 513, 230 (2012)CrossRefGoogle Scholar
  23. 23.
    D.V. Pinjari, A.B. Pandit, Ultrason. Sonochem. 18, 1118 (2011)CrossRefGoogle Scholar
  24. 24.
    R.D. Purohit, B.P. Sharma, K.T. Pillai, A.K. Tyagi, Mater. Res. Bull. 36, 2711 (2001)CrossRefGoogle Scholar
  25. 25.
    P. Ji, J. Zhang, F. Chen, M. Anpo, Appl. Catal. B 85, 148 (2009)CrossRefGoogle Scholar
  26. 26.
    K.S. Agrawal, V.S. Patil, A.G. Khairnar, A.M. Mahajan, J. Mater. Sci. Mater. Electron. 28, 12503 (2017)CrossRefGoogle Scholar
  27. 27.
    H. Xu, L. Gao, H. Gu, J. Guo, D. Yan, J. Am. Ceram. Soc. 85, 139 (2002)CrossRefGoogle Scholar
  28. 28.
    R. Bakkiyaraj, M. Balakrishnan, J. Adv. Phys. 6, 41 (2017)CrossRefGoogle Scholar
  29. 29.
    K.M.S. Khalil, L.A. Elkabee, B. Murphy, Microporous Mesoporous Mater. 78, 83 (2005)CrossRefGoogle Scholar
  30. 30.
    D. Channei, B. Inceesungvorn, N. Wetchakun, S. Phanichphant, A. Nakaruk, P. Koshy, C.C. Sorrell, Ceram. Int. 39, 3129 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Vatanparast, M. Ranjbar, M. Ramezani, S.M. Hosseinpour-Mashkani, M. Mousavi-Kamazani, Superlattices Microstruct. 65, 365 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Xu, B.W. Zeiger, K.S. Suslick, Chem. Soc. Rev. 42, 2555 (2013)CrossRefGoogle Scholar
  33. 33.
    P. Sathishkumar, R.V. Mangalaraja, S. Anandan, Renew. Sustain. Energy Rev. 55, 426 (2016)CrossRefGoogle Scholar
  34. 34.
    V.S. Moholkar, S.P. Sable, A.B. Pandit, AlChE J. 46, 684 (2000)CrossRefGoogle Scholar
  35. 35.
    A. Mahulkar, C. Riedel, P. Gogate, U. Neis, A. Pandit, Ultrason. Sonochem. 16, 635 (2009)CrossRefGoogle Scholar
  36. 36.
    H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (Wiley, New York, 1974)Google Scholar
  37. 37.
    A. Singhal, B. Sanyal, A.K. Tyagi, RSC Adv. 1, 903 (2011)CrossRefGoogle Scholar
  38. 38.
    M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, J.H. Lee, J. Mater. Chem. A 1, 9792 (2013)CrossRefGoogle Scholar
  39. 39.
    H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, I. Djerdj, RSC Adv. 2, 12413 (2012)CrossRefGoogle Scholar
  40. 40.
    D. Channei, A. Nakaruk, S. Phanichphant, Spectrochim. Acta Part A 183, 218 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite ClubEast Tehran Branch, Islamic Azad UniversityTehranIran
  2. 2.Department of ChemistryEast Tehran Branch, Islamic Azad UniversityTehranIran

Personalised recommendations