Optimal conditions for fabricating CIGS nanoparticles by solvothermal method
- 73 Downloads
Abstract
CIGS nanoparticles (NPs) were synthesized by solvothermal method. The effects of using argon and nitrogen as autoclave atmosphere and also metallic indium (Inmet) and InCl3 as indium precursors at different temperature profiles on crystalline phase of the fabricated CIGS NPs were investigated. Results show that producing single phase CIGS in N2 atmosphere is not possible. In Ar atmosphere, CuIn0.5Ga0.5Se2 pure phase was formed only by using InCl3 as indium precursor. In addition to CIGS, CuGaSe2 can also be observed, but CIS phase is not formed by using this approach. The particle size in the range of 20–45 nm was detected by XRD and SEM images. UV–visible absorption spectrum showed a broad peak in UV–visible range. Also reported is the unusual behavior of the produced NPs in different atmospheres.
Notes
Acknowledgements
The authors are grateful to research council of the University of Kashan for providing financial support (Grant Number of 682128) to undertake this work.
References
- 1.C.H. Lu, C.H. Lee, C.H. Wu, Sol. Energy Mater. Sol. Cells. 94, 1622 (2010)CrossRefGoogle Scholar
- 2.M. Wang, S.K. Batabyal, H.M. Lim, Z. Li, Y.M. Lam, J. Alloys Compd. 618, 522 (2015)CrossRefGoogle Scholar
- 3.S.H. Mousavi, T.S. Muller, P.W. de Oliveira, J. Colloid Interface Sci. 382, 48 (2012)CrossRefGoogle Scholar
- 4.B.P. Rand, J. Genoe, P. Heremans, J. Poortmans, Prog. Photovolt. Res. Appl. 15, 659 (2015)CrossRefGoogle Scholar
- 5.J.H. Woo, H. Yoon, J.H. Cha, D.Y. Jung, S.S. Yoon, J. Aerosol Sci. 54, 1 (2012)CrossRefGoogle Scholar
- 6.H. Lu, C. Yang, C. Lu, J. Mater. Sci. Mater. Electron. 27, 10642 (2016)Google Scholar
- 7.Y. Lin, X. Peng, L. Wang, Y. Lin, C. Wu, S. Liang, J. Mater. Sci. Mater. Electron. 25, 461 (2014)Google Scholar
- 8.M.E. Mohsen, B. Mostafa, J. Mater. Sci. Mater. Electron. (2015)Google Scholar
- 9.V.S. Saji, I.H. Choi, C.W. Lee, Sol. Energy. 85, 2666 (2011)CrossRefGoogle Scholar
- 10.B. Jeong, D.P. Norton, J.D. Budai, G.E. Jellison, Thin Solid Films. 446, 18 (2004)CrossRefGoogle Scholar
- 11.W. Wang, Y.W. Su, C.H. Chang, Sol. Energy Mater. Sol. Cells. 95, 2616 (2011)CrossRefGoogle Scholar
- 12.S. Ahn, K. Kim, K. Yoon, Curr. Appl. Phys. 8, 766 (2008)CrossRefGoogle Scholar
- 13.L. Fu, Y.Q. Guo, S. Zheng, Powder Diffr. 28, S28 (2013)CrossRefGoogle Scholar
- 14.W. Liu, D.B. Mitzi, M. Yuan, A.J. Kellock, S. Jay, O. Chey, Gunawan, Chem. Mater. 22, 1010 (2010)CrossRefGoogle Scholar
- 15.H. Lee, D. Jeong, T. Mun, B. Pejjai, V.R.M. Reddy, T.J. Anderson, C. Park, Korean J. Chem. Eng. 33, 2486 (2016)CrossRefGoogle Scholar
- 16.R.K. Wahi, Y. Liu, J.C. Falkner, V.L. Colvin, J. Colloid Interface Sci. 302, 530 (2006)CrossRefGoogle Scholar
- 17.S.I. Gu, S.H. Hong, H.S. Shin, Y.W. Hong, D.H. Yeo, J.H. Kim, S. Nahm, Ceram. Int. 38, S521 (2012)CrossRefGoogle Scholar
- 18.Y.G. Chun, K.H. Kim, K.H. Yoon, Thin Solid Films. 480–481, 46 (2005)CrossRefGoogle Scholar
- 19.S.H. Mousavi, T.S. Müller, R. Karos, P.W. De Oliveira, J. Alloys Compd. 659, 178 (2016)CrossRefGoogle Scholar
- 20.S. Hyo-Soon, G. Sin-Il, H. Seung-hyouk, H. Youn-Woo, Y. Dong-Hun, N. Sahn, J. Korean Phys. Soc. 57, 1059 (2010)CrossRefGoogle Scholar
- 21.M. Zahedifar, E. Ghanbari, M. Moradi, M. Saadat, Phys. Status Solidi Appl. Mater. Sci. 212, 657 (2015)CrossRefGoogle Scholar
- 22.F. Huang, A.H. Yan, H. Zhao, Z. Li, X.P. Cai, Y.H. Wang, Y.C. Wu, S.Bin Yin, Y.H. Qiang, Cryst. Res. Technol. 49, 953 (2014)CrossRefGoogle Scholar
- 23.A. Ben Marai, K. Djessas, Z. Ben, S. Ayadi, Alaya, J. Alloys Compd. 648, 1038 (2015)CrossRefGoogle Scholar
- 24.C.J. Hibberd, M. Ganchev, M. Kaelin, K. Ernits, A.N. Tiwari, in 2008 33rd IEEE Photovoltaic Specialists Conference (PVSC), p. 1 (2008)Google Scholar
- 25.F. Babbe, L. Choubrac, S. Siebentritt, F. Babbe, L. Choubrac, S. Siebentritt, 82105, 1142 (2016)Google Scholar
- 26.D. Abou-ras, S.S. Schmidt, N. Schäfer, J. Kavalakkatt, T. Rissom, T. Unold, R. Mainz, A. Weber, T. Kirchartz, E.S. Sanli, P.A. Van Aken, Q.M. Ramasse, H. Kleebe, D. Azulay, I. Balberg, O. Millo, O. Cojocaru-mirédin, D. Barragan-yani, K. Albe, J. Haarstrich, C. Ronning, Phys. Status Solidi Rapid Res. Lett. 375, 363 (2016)Google Scholar
- 27.R. Noufi, R.J. Matson, R.C. Powell, C. Herrington, Sol. Cells. 16, 479 (1986)CrossRefGoogle Scholar
- 28.H. Neumann, R.D. Tomlinson, Sol. Cells. 28, 301 (1990)CrossRefGoogle Scholar
- 29.G. Voorwinden, R. Kniese, M. Powalla, Thin Solid Films. 431–432, 538 (2003)CrossRefGoogle Scholar
- 30.Y.C. Lin, W.T. Yen, Y.L. Chen, L.Q. Wang, F.W. Jih, Phys. B Condens. Matter. 406, 824 (2011)CrossRefGoogle Scholar
- 31.T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T.P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, A.N. Tiwari, Prog. Photovoltaics Res. Appl. 25, 645 (2017)CrossRefGoogle Scholar
- 32.M. Sandberg, B. Moshfegh, Build. Environ. 37, 211 (2002)CrossRefGoogle Scholar
- 33.T. Zdanowicz, T. Rodziewicz, M. Zabkowska-Waclawek, Sol. Energy Mater. Sol. Cells. 87, 757 (2005)CrossRefGoogle Scholar
- 34.B. Li, Y. Xie, J. Huang, Y. Qian, Adv. Mater. 11, 1456 (1999)CrossRefGoogle Scholar
- 35.N.D. Abazović, D.J. Jovanović, M.M. Stoiljković, M.N. Mitrić, S.P. Ahrenkiel, J.M. Nedeljković, M.I. Čomor, J. Serbian Chem. Soc. 77, 789 (2012)CrossRefGoogle Scholar