Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: effect of varying the synthesis temperature

  • Abdelmajid Lassoued
  • Mohamed Saber Lassoued
  • Brahim Dkhil
  • Salah Ammar
  • Abdellatif Gadri
Article
  • 64 Downloads

Abstract

Nanoparticles of nickel ferrites (NiFe2O4) were synthesized at different temperature of synthesis (25, 50 and 80 °C) through the chemical co-precipitation method. The synthesized powders were characterized using X-ray diffraction for crystallite size and lattice parameter calculation. It reveals the presence of cubic spinel structure of ferrites with crystallite size between 29 and 41 nm. Transmission electron microscopy and scanning electron microscopy showed uniform distribution of ferrite particles with some agglomeration. The Fourier-transform infrared spectroscopy showed absorption bonds, which were assigned to the vibration of tetrahedral and octahedral complexes. Raman spectroscopy is used to verify that we have synthesized ferrite spinels and determines their phonon modes. The thermal decomposition of the NiFe2O4 was investigated by TGA/DTA. The optical study UV–visible is used to calculate the band gap energy. Magnetic measurements of the samples were carried out by means of vibrating sample magnetometer and these studies reveal that the formed nickel ferrite exhibits ferromagnetic behavior. Photoluminescence showed three bands of luminescence located at 420, 440 and 535 nm. The photocatalytic properties of nickel ferrite (NiFe2O4) nanoparticles were evaluated by studying the photodecomposition of methyl orange as organic pollutant models and showed a good photocatalytic activity.

Notes

Acknowledgements

The present work was supported by the Research Funds of Electrochemistry, Materials and Environment Research Unit UREME (UR17ES45), Faculty of Sciences Gabes University, Tunisia and Structures, Properties and Modeling of Solids (SPMS) Laboratory, Ecole Centrale Paris, France.

References

  1. 1.
    R. Kumar, G. Kumar, M.S. Akhtar, A. Umar, J. Alloys Compd. 629, 167–172 (2015)CrossRefGoogle Scholar
  2. 2.
    N.B. Bokhale, S.D. Bomble, R.R. Dalbhanjan, D.D. Mahale, S.P. Hinge, B.S. Banerjee, A.V. Mohod, P.R. Gogate, Ultrason. Sonochem. 21, 1797–1804 (2014)CrossRefGoogle Scholar
  3. 3.
    D.T. Sponza, Enzyme Microb. Technol. 31, 102–110 (2002)CrossRefGoogle Scholar
  4. 4.
    K. Vinodgopal, D.E. Wynkoop, Environ. Sci. Technol. 30, 1660–1666 (1996)CrossRefGoogle Scholar
  5. 5.
    H. Zhao, G. Zhang, S. Chong, N. Zhang, Y. Liu, Ultrason. Sonochem. 27, 474–479 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Ahmad, E. Ahmed, Z.L. Hong, W. Ahmed, A. Elhissi, N.R. Khalid, Ultrason. Sonochem. 21, 761–773 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Warang, N. Patel, R. Fernandes, N. Bazzanella, A. Miotello, Appl. Catal. B Environ. 132133, 204–211 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Hung, F.H. Ling, M.R. Haffmann, Environ. Sci. Technol. 34, 1758–1763 (2000)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, L. Gai, W. Ma, H. Jiang, X. Peng, L. Zhao, Ind. Eng. Chem. Res. 54, 2279–2289 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu, Y. Kong, B. Wang, Ultrason. Sonochem. 18, 177–183 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, W. Jiang, L. Xu, X. Yang, F. Li, Mater. Lett. 63, 2526–2528 (2009)Google Scholar
  12. 12.
    A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Berlin, 1987)Google Scholar
  13. 13.
    T. Sodaee, A. Ghasemi, R. Shoj-Razavi, J. Clust. Sci. 1–13 (2015)Google Scholar
  14. 14.
    S. Chang, Q. Haoxue, IEEE Trans. Magn. 108, 1–4 (2009)Google Scholar
  15. 15.
    S.K. Shrivastava, N.S. Gajbhiye, J. Am. Ceram. Soc. 95, 3678–3682 (2012)CrossRefGoogle Scholar
  16. 16.
    S.E. Shirsath, B.G. Toksha, K.M. Jadhav, Mater. Chem. Phys. 117, 163–168 (2009)CrossRefGoogle Scholar
  17. 17.
    P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, J Alloy Compd. 563, 6–11 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Kaur, S. Rana, P.S. Tarsikka, Ceram. Int. 38, 4319–4323 (2012)CrossRefGoogle Scholar
  19. 19.
    N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, J. Prasad, J. Sci. Ind. Res. 73, 87–90 (2014)Google Scholar
  20. 20.
    W.L. Suchanek, R.E. Riman, Adv. Sci. Technol. 45, 184–193 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Kaur, B.S. Randhawa, P.S. Tarsikka, Ind. J. Eng. Mater. Sci. 20, 325–328 (2013)Google Scholar
  22. 22.
    V. Pallai, D.O. Shah, J. Magn. Magn. Mater. 163, 243–248 (1996)CrossRefGoogle Scholar
  23. 23.
    M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Inorg. Chem. 51, 7764 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, J. Phys. E. 97, 328–334 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Mol. Struct. 1148, 276–281 (2017)CrossRefGoogle Scholar
  26. 26.
    A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Mol. Struct. 1141, 99–106 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Lassoued, M. Ben hassine, F. Karolak, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci. 28, 18857–18864 (2017)Google Scholar
  28. 28.
    Z. Wang, P. Lazor, S.K. Saxena, St Hugh, C. O’Neill, Mater. Res. Bull. 37, 1589–1602 (2002)CrossRefGoogle Scholar
  29. 29.
    Z. Wang et al Mater. Res. Bull. 37, 1589–1602(2002)CrossRefGoogle Scholar
  30. 30.
    A. Ahlawat, V.G. Sathe, Mossbauer, J. Raman Spectrosc. 42, 1087–1094 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Sivakumar, D. Anusuya, C.P. Khatiwada, J. Sivasubramanian, A. Venkatesan, P. Soundhirarajan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 69–75 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Bagheri, K.G. Chandrappa., S. Bee Abd Hamid, Res. J. Chem. Sci. 3, 62–68 (2013)Google Scholar
  33. 33.
    S. Shen, C.X. Kronawitter, J. Jiang, S.S. Mao, L. Guo, Nano Res. 5, 327–336 (2012)CrossRefGoogle Scholar
  34. 34.
    R. Branek, H. Kisch, Photochem. Photobiol. Sci. 7, 40–48 (2008)CrossRefGoogle Scholar
  35. 35.
    A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, J. Results Phys. 7, 3007–3015 (2017)CrossRefGoogle Scholar
  36. 36.
    J.I. Pankove, Prentice-Hall Inc., Englewood Cliff. (1971) 34–86Google Scholar
  37. 37.
    A. Lassoued, M.S. Lassoued, F. Karolak, S. García-Granda, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci. 28, 18480–18488 (2017)Google Scholar
  38. 38.
    A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 90, 123–128 (2000)CrossRefGoogle Scholar
  39. 39.
    M. Mishra, D.M. Chun, Appl. Catal. 498, 126–141 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abdelmajid Lassoued
    • 1
    • 2
  • Mohamed Saber Lassoued
    • 1
  • Brahim Dkhil
    • 2
  • Salah Ammar
    • 1
  • Abdellatif Gadri
    • 1
  1. 1.Unité de Recherche Electrochimie, Matériaux et Environnement UREME (UR17ES45), Faculté des Sciences de GabèsUniversité de GabèsGabèsTunisia
  2. 2.Laboratoire Structures, Propriétés et Modélisation des Solides CentraleSupélec, CNRS-UMR8580Université Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations