Advertisement

Hetero plasmonic 2D and 3D ZnO/Ag nanostructures: electrical and photocatalytic applications

  • Ali RahmatiEmail author
  • Bentolhoda Rahmani
  • Asma Farokhipour
Article

Abstract

ZnO thin films (TFs) and nanorods (NRs) array have been synthesized by RF magnetron sputtering and low temperature wet chemical method, respectively. It is followed by deposition of Ag nanosheet using DC magnetron sputtering, which forms 2D and 3D ZnO/Ag heterointerfaces. This work devotes the significant of thickness, annealing and shape of ZnO–Ag heterojunction on its characteristics. A successful fabrication of ZnO–Ag heterostructure was presented to improve (modify) the conductivity and optical absorption. UV–Vis near IR absorption spectroscopy revealed higher absorption efficiency in the visible region for Ag–ZnO thin film rather than in pure ZnO. The optical response of ZnO–Ag composite based on Gans theory indicates surface plasmon resonance behavior as well in nonspheriod (oblate) Ag nanoislands. The transport behavior of FTO/Ag/ZnO NRs/Cu heterojunction could be useful in variable resistor (varistor). Current voltage characteristic of Ag/ZnO NRs/FTO shows good Schottky behavior. The predicted Schottky barrier height of 1 V was obtained which is not far from the theoretical Schottky–Mott value of 0.8 V. Photocatalytic degradation of Rhodamine B (RhB) was used to evaluate the activity of ZnO NRs/Ag heterostructure. ZnO NRs/Ag heterostructure depicts the best photocatalytic activity due to electronic and plasmonic coupling.

Notes

Acknowledgements

The authors would like to acknowledge financial support of Iranian nanotechnology initiative. The corresponding author (Ali Rahmati) is grateful to his wife, Mrs Mahla Ghaemi Moghadam for her patience and invaluable help.

References

  1. 1.
    A. Umar, M.S. Chauhan, S. Chauhan, R. Kumar, G. Kumar, S.A. Al-Sayari, S.W. Hwang, A. Al-Hajry, J. Colloid Interface Sci. 363, 521–528 (2011)CrossRefGoogle Scholar
  2. 2.
    N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, A. Bojinova, C. Dushkin, Surf. Coat. Technol. 207, 5–10 (2012)CrossRefGoogle Scholar
  3. 3.
    Z. Liu, Q. Zhang, Y. Li, H. Wang, J. Phys. Chem. Solids. 73, 651–655 (2012)CrossRefGoogle Scholar
  4. 4.
    ÖA. Yıldırım, H.E. Unalan, C. Durucan, J. Am. Ceram. Soc. 96, 766–773 (2013)CrossRefGoogle Scholar
  5. 5.
    Q. Deng, X. Duan, D.H.L. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, G. Wang, ACS Appl. Mater. Interfaces. 4, 6030–6037 (2012)CrossRefGoogle Scholar
  6. 6.
    Y.K. Mishra, V.S.K. Chakravadhanula, V. Hrkac, S. Jebril, D.C. Agarwal, S. Mohapatra, D.K. Avasthi, L. Kienle, R. Adelung, J. Appl. Phys. 112, 064308 (2012)CrossRefGoogle Scholar
  7. 7.
    W. Xie, Y. Li, W. Sun, J. Huang, H. Xie, X. Zhao, J. Photochem. Photobiol. A. 216, 149–155 (2010)CrossRefGoogle Scholar
  8. 8.
    H.R. Liu, G.X. Shao, J.F. Zhao, Z.X. Zhang, Y. Zhang, J. Liang, X.G. Liu, H.S. Jia, B.S. Xu, J. Phys. Chem. C. 116, 16182–16190 (2012)CrossRefGoogle Scholar
  9. 9.
    J.B. You, X.W. Zhang, Y.M. Fan, Z.G. Yin, P.F. Cai, N.F. Chen, J. Phys. D: Appl. Phys. 41, 205101 (2008)CrossRefGoogle Scholar
  10. 10.
    H.K. Yadav, K. Sreenivas, V. Gupta, J. Appl. Phys. 107, 044507-1–044507-9 (2010)Google Scholar
  11. 11.
    S. Ali Rahmati, S. Zakeri‑Afshar, J Mater Sci: Mater Electron. 28, 13032–13040 (2017)Google Scholar
  12. 12.
    A. Rahmati, M. Yousefi, Z. Anorg. Allg. Chem. 643, 870–876 (2017)CrossRefGoogle Scholar
  13. 13.
    A.D. Mauro, M.E. Fragalà, V. Privitera, G. Impellizzeri, Mater. Sci. Semicond. Process. 69, 44–51 (2017)CrossRefGoogle Scholar
  14. 14.
    A. Rahmati, F.R. Bayaz, A. Lotfiani, M. Kohestani, Lith. J. Phys. (2017) (in press)Google Scholar
  15. 15.
    J.C. Slater, Atomic shielding constants. Phys. Rev. 36, 57 (1930)CrossRefGoogle Scholar
  16. 16.
    J. Pal, A.K. Sasmal, M. Ganguly, T. Pal, J. Phys. Chem. C. 119, 3780–3790 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Zamiri, A. Rebelo, G. Zamiri, A. Adnani, A. Kuashal, M.S. Belsley, J.M.F. Ferreira, RSC Adv. 4, 20902–20908 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Zamiri, A. Zakaria, H.A. Ahangar, A.R. Sadrolhosseini, M.A. Mahdi, Int. J. Mol. Sci. 11(11), 4764–4770 (2010)CrossRefGoogle Scholar
  19. 19.
    A. Jain, P. Sagar, R.M. Mehra, Solid-State Electron. 50, 1420–1424 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Ranjan, J. Nanopart. Res. 15, 1908 (2013)CrossRefGoogle Scholar
  21. 21.
    A.L. Gonzalez, J.A. Reyes-Esqueda, C. Noguez, J. Phys. Chem. C. 112, 7356 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Noguez, J. Phys. Chem. C. 111, 3806 (2007)CrossRefGoogle Scholar
  23. 23.
    P. Jain, P. Arun, J. Appl. Phys. 115, 204512 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Gwon, Y.U. Lee, J.W. Wu, D. Nam, H. Cheong, D.W. Kim, ACS Appl. Mater. Interfaces. 6, 8602–8605 (2014)CrossRefGoogle Scholar
  25. 25.
    P.B. Johnson, R.W. Christy, Phys. Rev. B. 6, 4370–4379 (1972)CrossRefGoogle Scholar
  26. 26.
    X.W. Sun, H.S. Kwok., J. Appel. Phys. 86(1), 408–411 (1999)CrossRefGoogle Scholar
  27. 27.
    A. Ahmad, A. Alsaad, Eur. Phys. J. B. 52, 41–46 (2006)CrossRefGoogle Scholar
  28. 28.
    D. Zhang, P. Wang, R. Murakami, X. Song, Appl. Phys. Lett. 96, 233114 (2010)CrossRefGoogle Scholar
  29. 29.
    D. Fyfe, Nat. Photonics. 3, 453 (2009)CrossRefGoogle Scholar
  30. 30.
    K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. (Springer, Berlin, 2008)CrossRefGoogle Scholar
  31. 31.
    P. Wang, D.Y. Zhang, D.H. Kim, Z. Qiu, L. Gao, R. Murakami, X.P. Song, J. Appl. Phys. 106, 103104 (2009)CrossRefGoogle Scholar
  32. 32.
    H. Han, N.D. Theodore, T.L. Alford, J. Appl. Phys. 103, 013708 (2008)CrossRefGoogle Scholar
  33. 33.
    K. Sivaramakrishnan, T.L. Alford, Appl. Phys. Lett. 94, 052104 (2009)CrossRefGoogle Scholar
  34. 34.
    H. Raether, Surface Plasmon on Smooth and Rough Surfaces and Gratings. (Springer, Berlin, 1988)CrossRefGoogle Scholar
  35. 35.
    A. Zuniga-Segundo, O. Mata-Mendez, Phys. Rev. B, 46, 536–539 (1992)CrossRefGoogle Scholar
  36. 36.
    A. Wirgin, A.A. Maradudin, Phys. Rev. B. 31, 5573–5576 (1985)CrossRefGoogle Scholar
  37. 37.
    X.A. Zhang, F. Hai, T. Zhang, C. Jia, X. Sun, L. Ding, W. Zhang, Microelectron. Eng. 93, 5–9 (2012)CrossRefGoogle Scholar
  38. 38.
    M.M. Momeni, I. Ahadzadeh, A. Rahmati, J Mater Sci: Mater Electron. 27, 8646–8653 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ali Rahmati
    • 1
    • 2
    Email author
  • Bentolhoda Rahmani
    • 1
    • 2
  • Asma Farokhipour
    • 1
    • 2
  1. 1.Department of Physics, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran
  2. 2.Nanostructure Laboratory, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations