Skip to main content

Advertisement

Log in

Polypyrrole@ silica composites as high performance electrode materials for Lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A composite of polypyrrole and silica (PPy@SiO2) was prepared by solution polymerization. Special attention was paid to characterization of the possible electrochemical reduction of nano-SiO2 in the composite. The electrochemical results show that the initial discharge capacity of the PPy@SiO2 composite electrode is 1800 mAh/g. After 50 cycles of charging and discharging, the capacity of discharge is approximately 1300 mAh/g, and the coulomb efficiency is up to 98.3% with the capacity fade rate of 1.7%. It indicates composite electrodes exhibit good rate performance and cycle stability. In addition, compared with the pure silica electrode cell, the capacity of the PPy@SiO2 composite electrode cell is improved obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Dunn, H. Kamath, J.M. Tarascon, Sci 334, 928–935 (2011)

    Article  CAS  Google Scholar 

  2. M. Rao, W. Li, E.J. Cairns, Electrochem. Commun 17, 1–5 (2012)

    Article  CAS  Google Scholar 

  3. D. Liu, G. Cao, Energ. Environ. Sci 3, 1218–1237 (2010)

    Article  CAS  Google Scholar 

  4. B. Scrosati, Nat 473, 448–449 (2011)

    Article  CAS  Google Scholar 

  5. J.W. Fergus, J. Power Sources 195, 939–954 (2010)

    Article  CAS  Google Scholar 

  6. X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.J. Chen, Nano Energ 31, 113–143 (2017)

    Article  CAS  Google Scholar 

  7. X.L. Liu, Y.X. Chen, H.B. Liu, Z.Q. Liu, J. Mater. Sci. Technol 3, 239–245 (2017)

    Article  Google Scholar 

  8. H.D. Chen, X.H. Hou, L.N. Qu, H.Q. Qin, Q. Ru, Y. Huang, S.J. Hu, K. Lam, J. Mater. Sci. 28, 250–258 (2017)

    CAS  Google Scholar 

  9. Y.J. Zhang, H. Chu, L.W. Zhao, L.F. Yuan, J. Mater. Sci. 1–7 (2017)

  10. X. Su, Q.L. Wu, J.C. Li, X.C. Xiao, A. Lott, W.Q. Lu, B.W. Sheldon, J. Wu, Adv. Energ. Mater. 4, 375–379 (2014)

    Article  Google Scholar 

  11. H. Maruyama, H. Nakano, M. Ogawa, M. Nakamoto, T. Ohta, A. Sekiguchi, Sci. Rep 5, 13219 (2015)

    Article  CAS  Google Scholar 

  12. R.Y. Zhang, Y.J. Du, L. Du, D.K. Shen, J.P. Yang, Z.P. Guo, H.K. Liu, A.A. Elzatahry, D.Y. Zhao, Adv. Mater. 26, 6749–6755 (2014)

    Article  CAS  Google Scholar 

  13. Z.L. Zhang, Y.H. Wang, W.F. Ren, Q.Q. Tan, Y.F. Chen, H. Li, Z.Y. Zhong, F.B. Su, Angew. Chem. Int. Ed 53, 5265–5269 (2014)

    Article  Google Scholar 

  14. B.K. Guo, J. Shu, Z.X. Wang, H. Yang, L.H. Shi, Y.N. Liu, L.Q. Chen, Electrochem. Commun. 10, 1876–1878 (2008)

    Article  CAS  Google Scholar 

  15. Y. Yao, J.J. Zhang, L.G. Xue, T. Huang, A. Yu, J. Power Sources 196, 10240–10243 (2011)

    Article  CAS  Google Scholar 

  16. D.W. Choi, K.L. Choy, Electrochim. Acta. 218, 47–53 (2016)

    Article  CAS  Google Scholar 

  17. Y.R. Ren, H.M. Wei, X.B. Huang, J.N. Ding, Int. J. Electrochem. Sci. 9, 7784–7794 (2014)

    Google Scholar 

  18. P.P. Lv, H.L. Zhao, J. Wang, X. Liu, T.H. Zhang, Q. Xia, J. Power Sources 237, 291–294 (2013)

    Article  CAS  Google Scholar 

  19. J.K. Meng, Y. Cao, Y. Suo, Y.S. Liu, J.M. Zhang, X.C. Zheng, Electrochim. Acta. 176, 1001–1009 (2015)

    Article  CAS  Google Scholar 

  20. Z.P. Guo, J.Z. Wang, H.K. Liu, S.X. Dou, J. Power Sources 146, 448–451 (2005)

    Article  CAS  Google Scholar 

  21. Y. Yang, Y. Chu, F.Y. Yang, Y.P. Zhang, Mater. Chem. Phys. 92, 164–171 (2005)

    Article  CAS  Google Scholar 

  22. D. Muñoz-Rojas, J. Oró-Solé, O. Ayyad, P. Gomez-Romero, Small 4, 1301–1306 (2008)

    Article  Google Scholar 

  23. S.B. Wang, G.Q. Shi, Mater. Chem. Phy 102, 255–259 (2007)

    Article  CAS  Google Scholar 

  24. Y. Lu, A. Pich, H. Adler, Synth. Met. 37, 135–136 (2003)

    Google Scholar 

  25. H.Q. Li, J.V. John, S.J. Byeon, M.S. Heo, J.H. Sung, K.H. Kim, I. Kim, Prog. Polym. Sci. 39, 1878–1907 (2014)

    Article  CAS  Google Scholar 

  26. F.Y. Yang, Y. Chu, S.Y. Ma, Y.P. Zhang, J.L. Liu, J. Colloid Interface Sci. 301, 470–478 (2006)

    Article  CAS  Google Scholar 

  27. Y.H. Hou, H.L. Yuan, H. Chen, J.H. Shen, L.G. Li, Ceram. Int. 43, 11505–11510 (2017)

    Article  CAS  Google Scholar 

  28. J.Y. Kim, D.T. Nguyen, J.S. Kang, S.W. Song, J. Alloys Compd. 633, 92–96 (2015)

    Article  CAS  Google Scholar 

  29. C.C. Nguyen, H. Choi, S.W. Song, J. Electrochem. Soc. 160, A906-A914 (2013)

    Google Scholar 

  30. Q. Sun, B. Zhang, Z.W. Fu, Appl. Surf. Sci. 254, 3774–3779 (2008)

    Article  CAS  Google Scholar 

  31. N. Yan, F. Wang, H. Zhong, Y. Li, Y. Wang, L. Hu, Q. W. Chen, Sci. Rep 3, 1568–1573 (2013)

    Article  Google Scholar 

  32. M. Islam, G. Ali, M.G. Jeong, W. Choi, K.Y. Chung, H.G. Jung, ACS Appl. Mater. Interfaces. 9, 14833–14843 (2017)

    Article  CAS  Google Scholar 

  33. G. Ali, G. Rahman, K.Y. Chung, Electrochim. Acta 238, 49–55 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Natural Science Foundation of China (Nos. 61504080 and 51676130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuyan Liu or Deng Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, M., Zhu, X. et al. Polypyrrole@ silica composites as high performance electrode materials for Lithium-ion batteries. J Mater Sci: Mater Electron 29, 6098–6104 (2018). https://doi.org/10.1007/s10854-018-8585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8585-3

Navigation