Skip to main content

Advertisement

Log in

Hydrothermal synthesis of nano-SnO2@SiO2 composites for lithium-ion battery anodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnO2-based lithium-ion batteries have low cost and high energy density, but their capacity fades rapidly during lithiation/delithiation due to phase aggregation and cracking. A modified hydrothermal method was developed to synthesize tin oxide doped with highly dispersed silicon oxide, sing SnCl4·5H2O and amounts of tetraethyl orthosilicate as the starting materials and NH3·H2O as PH regulator. Fine powders of tin oxide as active materials were doped with highly dispersed silicon oxide as inert materials in atomic or nano-meter scale. The microstructure, morphology and electrochemical performance of the mixtures were analyzed by X-ray diffraction, infra-red, scanning electron microscopy and electrochemical methods. Silicon oxide as matrix should be able to support the anode changes accompanied by the formation of lithium–tin alloys, thus an improvement of the cycle ability of the Li-ion battery would be expected. The electrochemical results showed that addition of silicon oxide reduces the irreversible capacity during the first discharge/charge cycle. The electrochemical performance indicates that amorphous silicon oxide is an appropriate matrix and these composites are good anode candidates for application in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Deng, J. Li, T. Li, J. Energy 123, 77–88 (2017)

    Article  CAS  Google Scholar 

  2. N. Nitta, F.X. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252–264 (2015)

    Article  CAS  Google Scholar 

  3. M.A. Hannan, M.S.H. Lipu, A. Hussain, Renew. Sustain. Energy Rev. 78, 834–845 (2017)

    Article  Google Scholar 

  4. H.H. Wang, H.R. Peng, G.C. Li, K.Z. Chen, Chem. Eng. J. 275, 160–168 (2015)

    Article  CAS  Google Scholar 

  5. S. Ramaprabhu, G. Ananya, R. Sripada, J. Mater. Chem. 5(6), 2784–2790 (2017)

    Article  CAS  Google Scholar 

  6. N. Li, H.W. Song, H. Cui, G.W. Yang, C.X. Wang, J. Mater. Chem. A 2, 2526 (2014)

    Article  CAS  Google Scholar 

  7. W. Zhang, P. Zuo, C. Chen, J. Power Source 312, 216 (2016)

    Article  CAS  Google Scholar 

  8. W.B. Soltan, M. Mbarki, S. Ammar, O. Babot, T. Toupance, Opt. Mater. 54, 139–146 (2016)

    Article  CAS  Google Scholar 

  9. D.E. Yoon, C. Hwang, N.R. Kang, Acs Appl. Mater. Interfaces 8(6), 4042 (2016)

    Article  CAS  Google Scholar 

  10. S.Y. Lee, K.Y. Park, W.S. Kim, Nano Energy 19, 234–245 (2016)

    Article  CAS  Google Scholar 

  11. M. Liu, D. Zhou, H.R. Jiang, Nano. Energy 28, 97–105 (2016)

    Article  CAS  Google Scholar 

  12. Z. Cao, H. Yang, P. Dou, Electrochim. Acta 209, 700–708 (2016)

    Article  CAS  Google Scholar 

  13. M. Wu, N. Du, H. Wu, Energy Technol. 4(11), 1435–1439 (2016)

    Article  CAS  Google Scholar 

  14. Y.H. Sun, P.P. Dong, S. Liu, Mater. Res. Bull. 74, 299–310 (2017)

    Article  CAS  Google Scholar 

  15. W. Dong, J. Xu, C. Wang, Adv. Mater. 29(24), 1700136 (2017)

    Article  CAS  Google Scholar 

  16. L. Wen, X. Qin, W. Meng, Mater. Sci. Eng. B 213, 63–68 (2016)

    Article  CAS  Google Scholar 

  17. J. Li, J. Guo, X. Zhang, Ionics 22(12), 2307–2313 (2016)

    Article  CAS  Google Scholar 

  18. J. Yan, Y. Tan, X. Hu, Acs, Appl. Mater. Interfaces 9(18), 15388–15393 (2017)

    Article  CAS  Google Scholar 

  19. J.S. Chen, X.W. Lou, Small 9(11), 1877–1893 (2013)

    Article  CAS  Google Scholar 

  20. J. Cao, T. Zhang, F. Li, New J. Chem. 37(7), 2031–2036 (2013)

    Article  CAS  Google Scholar 

  21. Y. Zhang, Z. Hu, Y. Liang, Mater. Chem. A 3(29), 15057–15067 (2015)

    Article  CAS  Google Scholar 

  22. X. Zhou, M. Torabi, J. Lu, ACS Appl. Mater. Interfaces 6(5), 3058 (2016)

    Article  CAS  Google Scholar 

  23. X. Shi, W. Zhou, D. Ma, Nanomaterials 16(1), 122 (2015)

    Google Scholar 

  24. G. Chen, Y. Liu, F. Liu, Appl. Surf. Sci. 311(9), 808–815 (2014)

    Article  CAS  Google Scholar 

  25. S. Ren, Y. Yang, M. Xu, Colloids Surf. A 444(4), 808–815 (2014)

    Google Scholar 

  26. M.S. Pereira, F.A.S. Lima, T.S. Ribeiro, Opt. Mater. 64, 548–556 (2017)

    Article  CAS  Google Scholar 

  27. L. Yang, K. Chen, T. Dong, J. Nanosci. Nanotechnol. 16(2), 1768–1774 (2016)

    Article  CAS  Google Scholar 

  28. F. Tian, X. Wang, Z. Chen, RSC Adv. 6(108), 106275–106284 (2016)

    Article  CAS  Google Scholar 

  29. J. Wang, W. Li, F. Wang, Nanoscale 6(6), 3217–3222 (2014)

    Article  CAS  Google Scholar 

  30. Y. Zhao, C. Wei, S. Sun, Adv. Sci. 2(6), 1500097 (2015)

    Article  CAS  Google Scholar 

  31. Q. Shao, J. Tang, Y. Sun, Nanoscale 9(13), 4439–4444 (2017)

    Article  CAS  Google Scholar 

  32. H. Zhou, M.A. Naeem, P. Lv, J. Alloys Compd. 711, 414–423 (2017)

    Article  CAS  Google Scholar 

  33. M. Xie, Z. Zhang, W. Han, J. Mater. Chem. A 5(21), 10338–10346 (2017)

    Article  CAS  Google Scholar 

  34. H. Bian, Y. Tian, C. Lee, Acs. Appl. Mater. Interfaces 8(42), 28862–28871 (2016)

    Article  CAS  Google Scholar 

  35. R. Chowdhury, N. Barah, M.H. Rashid, Chemistryselect 1(15), 4682–4689 (2016)

    Article  CAS  Google Scholar 

  36. B.P. Vinayan, S. Ramaprabhu, J. Mater. Chem. A 1(12), 3865–3871 (2013)

    Article  CAS  Google Scholar 

  37. Z. Yang, G. Du, Q. Meng, RSC Adv. 1(9), 1834–1840 (2011)

    Article  CAS  Google Scholar 

  38. J. Li, Y. Zhao, N. Wang, Chem. Commun. 47(18), 5238–5240 (2011)

    Article  CAS  Google Scholar 

  39. S. Yoon, C. Jo, S.Y. Noh, Phys. Chem. Chem. Phys. 13(23), 11060–11066 (2011)

    Article  CAS  Google Scholar 

  40. G. Xia, N. Li, D. Li, Mater. Lett. 65(23–24), 3377–3379 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from the National Natural Science Foundation of China (Nos. 61504080 and 51676130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuyan Liu or Deng Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Han, Y., Zeng, J. et al. Hydrothermal synthesis of nano-SnO2@SiO2 composites for lithium-ion battery anodes. J Mater Sci: Mater Electron 29, 5710–5717 (2018). https://doi.org/10.1007/s10854-018-8541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8541-2

Navigation