Advertisement

Sintering characteristics and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics doped with La2O3 and MgO

  • Bo ChenEmail author
  • Ling Han
  • Baoyin Li
Article
  • 82 Downloads

Abstract

To investigate how addition of La2O3 and MgO influenced the structures, phase composition, sintering characteristics, and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 (ZST) ceramics, we synthesized the ceramic samples using solid-state methodology. X-ray diffraction analysis indicated that the doped ZST samples were homogeneous, composed of a single phase with orthorhombic structure. Appropriate content of MgO doping favored grain growth and densification, affected the grain size distribution, and improved the dielectric properties of sintered ZST ceramics. With the sequentially increased in La2O3 and MgO contents, a defective ceramic including incomplete growth of grains, the incompact structures and the increasing porosities was formed. To demonstrate excellent microwave dielectric properties, 0.5 wt% La2O3 and 1.0 wt% MgO were added to ZST ceramics and sintered at 1320 °C for 5 h. Resulting sintered material had a moderate relative permitivitty (εr = 38.44), a superior Q × f value (52670 GHz at 5.6 GHz), and almost zero value for temperature coefficient of resonance frequency (τf = 0.81 ppm/°C).

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.51578327).

References

  1. 1.
    M. Xiao, Y.S. Wei, Q.Q. Gu, P. Zhang, The relationship between the bond ionicity, lattice energy, bond energy and microwave dielectric properties of LaNbO4 ceramics. J. Mater. Sci. Mater. Electron. 29(12), 9963–9970 (2018)CrossRefGoogle Scholar
  2. 2.
    Q.L. Sun, H.Q. Zhou, X.F. Luo, L.S. Hu, L.C. Ren, Influence of La2O3/SrO doping of (Zr0.8Sn0.2)TiO4 ceramics on their sintering behavior and microwave dielectric properties. Ceram. Int. 42(10), 12306–12311 (2016)CrossRefGoogle Scholar
  3. 3.
    D.D. Liu, P. Liu, B.C. Guo, Low-temperature sintering and microwave dielectric properties of Li4Mg3Ti2O9 ceramics by a sol–gel method. J. Mater. Sci. 29(12), 10264–10268 (2018)Google Scholar
  4. 4.
    S. Takahashi, A. Kan, H. Ogawa, Microwave dielectric properties and crystal structures of spinel-structured MgAl2O4 ceramics synthesized by a molten-salt method. J. Eur. Ceram.Soc. 37(3), 1001–1006 (2017)CrossRefGoogle Scholar
  5. 5.
    R.Y. Yang, M.H. Weng, H. Kuan, TEM observation of liquid phase sintering in V2O5 modified Zr0.8Sn0.2TiO4 microwave ceramics. Ceram. Int. 35(1), 39–43 (2009)CrossRefGoogle Scholar
  6. 6.
    N. Michiura, T. Tatekawa, Y. Higuchi, H. Tamara, Role of donor and acceptor ions in the dielectric loss tangent of (Zr0.8Sn0.2)TiO4 dielectric resonator material. J. Am. Ceram. Soc. 78(3), 793–796 (1995)CrossRefGoogle Scholar
  7. 7.
    Y.C. Heiao, L. Wu, C.C. Wei, Microwave dielectric properties of (Zr,Sn)TiO4 ceramic. Mater. Res. Bull. 23(12), 1687–1692 (1988)CrossRefGoogle Scholar
  8. 8.
    K. Wakino, K. Mino, H. Tamura, Microwave characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonators. J. Am. Ceram. Soc. 67(4), 278–281 (1984)CrossRefGoogle Scholar
  9. 9.
    Z.Y. Zhang, H.K. Zhu, Y. Zhang, Y.H. Chen, Z.X. Fu, K. Huang, Q.T. Zhang, Effects of the Ba3(VO4)2 additions on microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. J. Mater. Sci. 28(2), 2044–2048 (2017)Google Scholar
  10. 10.
    Q.L. Sun, H.Q. Zhou, L. Qian, Y.Z. Wang, H.K. Zhu, Z.X. Yue, Effects of MgO, SrO and La2O3 co-doping on structure and properties of (Zr0.8Sn0.2)TiO4 ceramics. J. Inorg. Mater. 31(8), 812–818 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Qian, H.Q. Zhou, Q.X. Jiang, L.C. Ren, W.T. Xie, X.F. Luo, Q.L. Sun, Effect of MgO, BaO and La2O3 additions on microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. J. Mater. Sci. 27(6), 6183–6187 (2016)Google Scholar
  12. 12.
    D.J. Kim, J.W. Hahn, G.P. Han, S.S. Lee, T.G. Choy, Effects of alkaline-earth-metal addition on the sinterability and microwave characteristics of (Zr,Sn)TiO4 dielectrics. J. Am. Ceram. Soc. 83(4), 1010–1012 (2000)CrossRefGoogle Scholar
  13. 13.
    Z. Wang, Q.F. Shu, K.C. Chou, Structure of CaO-B2O3-SiO2-TiO2 glasses: a Raman Spectral Study. ISIJ. Int. 51(7), 1021–1027 (2011)CrossRefGoogle Scholar
  14. 14.
    B. Chen, L. Han, B.Y. Li, X.D. Sun, Effects of CaO and La2O3 doping of (Zr0.8Sn0.2)TiO4 ceramics on the densifying behavior and microwave dielectric properties. J. Mater. Sci. 28(13), 9542–9547 (2017)Google Scholar
  15. 15.
    A. Ioachim, M.G. Banciu, M.I. Toacsen, L. Nedelcu, D. Ghetu, H.V. Alexandru, C. Berbecaru, A. Dutu, G. Stoica, High-k Mg-doped ZST for microwave applications. Appl. Surf. Sci. 253(1), 335–338 (2006)CrossRefGoogle Scholar
  16. 16.
    B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. 8, 402–410 (1960)CrossRefGoogle Scholar
  17. 17.
    W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity of microwave insulators. IEEE Trans. Microwave Theory Tech. 18, 476–485 (1970)CrossRefGoogle Scholar
  18. 18.
    Y. Kobayashiy, M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microwave Theory Tech. 33, 586–592 (1985)CrossRefGoogle Scholar
  19. 19.
    G.Q. Wang, S.H. Wu, H.Y. Yan, Study on the calcination and sintering technique of (Zr0.8Sn0.2)TiO4 ceramics. Piezoelectrics Acoustooptics. 25(4), 321–324 (2003)Google Scholar
  20. 20.
    L.Z. Wang, L.X. Wang, Z.F. Wang, B.Y. Huang, Q.T. Zhang, Z.X. Fu, Effect of ZnO/Er2O3 addition on microwave properties of (Zr0.8Sn0.2)TiO4 ceramics. J. Mater. Sci. 27(4), 3929–3933 (2016)Google Scholar
  21. 21.
    J.Q. Chen, Y. Tang, H.C. Xiang, L. Fang, H. Porwald, C.C. Li, Microwave dielectric properties and infrared reflectivity spectra analysis of two novel low-firing AgCa2B2V3O12 (B = Mg, Zn) ceramics with garnet structure. J. Eur. Ceram. 38(14), 4670–4676 (2018)CrossRefGoogle Scholar
  22. 22.
    M. Mikoczyova, Influence of forming method and sintering process on densification and final microstructure of submicrometre alumina ceramics. Process. Appl. Ceram. 2(1), 13–17 (2008)CrossRefGoogle Scholar
  23. 23.
    D. Pamu, G.L.N. Rao, K.C.J. Raju, Effect of BaO, SrO and MgO addition on microwave dielectric properties of (Zr0.8,Sn0.2)TiO4 ceramics. J. Alloy. Compd. 475(1–2), 745–751 (2009)CrossRefGoogle Scholar
  24. 24.
    C.L. Huang, S.H. Huang, Low-loss microwave dielectric ceramics in the (Co1 – xZnx)TiO3 (x = 0-0.1) system. J. Alloy. Compd. 515, 8–11 (2012)CrossRefGoogle Scholar
  25. 25.
    Q.S. Cao, W.Z. Lu, X.C. Wang, J.H. Zhu, B. Ulla, W. Lei, Novel zinc manganese oxide-based microwave dielectric ceramics for LTCC applications. Ceram. Int. 41(9), 9152–9156 (2015)CrossRefGoogle Scholar
  26. 26.
    Z.Y. Zou, Z.H. Chen, X.K. Lan, W.Z. Lu, B. Ulla, X.H. Wang, W. Lei, Weak ferroelectricity and low permittivity microwave dielectric properties of Ba2Zn(1 + x)Si2O(7 + x) ceramics. J. Eur. Ceram. Soc. 37(9), 3065–3071 (2017)CrossRefGoogle Scholar
  27. 27.
    X.S. Lyu, L.X. Li, H. Sun, S. Zhang, S. Li, High-Q microwave dielectrics in wolframite magnesium zirconium tantalate ceramics. Ceram. Int. 42(1), 2036–2040 (2016)CrossRefGoogle Scholar
  28. 28.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)CrossRefGoogle Scholar
  29. 29.
    L. Fang, C.X. Su, H.F. Zhou, Z.H. Wei, H. Zhang, Novel low-firing microwave dielectric ceramic LiCa3MgV3O12 with low dielectric loss. J. Am. Ceram. Soc. 96(3), 688–690 (2013)CrossRefGoogle Scholar
  30. 30.
    S.X. Zhang, J.B. Li, H.Z. Zhai, J.H. Dai, Low temperature sintering and dielectric properties of (Zr0.8Sn0.2)TiO4 microwave ceramics using La2O3/BaO additives. Mater. Chem. Phys. 77(2), 470–475 (2002)CrossRefGoogle Scholar
  31. 31.
    W.S. Kim, T.H. Kim, E.S. Kim, K.H. Yoon, Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives. Jpn. J. Appl. Phys. 37(9B), 5367–5371 (1998)CrossRefGoogle Scholar
  32. 32.
    Q.L. Sun, H.Q. Zhou, H.K. Zhu, H.Q. Qi, L.S. Hu, Z.X. Yue, Sintering behavior and microwave dielectric properties of Y2O3-ZnO doped (Zr0.8Sn0.2)TiO4 ceramics. J. Mater. Sci. 27(8), 7750–7754 (2016)Google Scholar
  33. 33.
    R.K. Bhuyan, T.S. Kumar, D. Goswami, A.R. James, D. Pamu, Liquid phase effect of La2O3 and V2O5 on microwave dielectric properties of Mg2TiO4 ceramics. J. Electroceram. 31(1–2), 48–54 (2013)CrossRefGoogle Scholar
  34. 34.
    L.Z. Wang, L.X. Wang, Z.F. Wang, B.Y. Huang, Q.T. Zhang, Z.X. Fu, Effect of sintering aid ZnO-CeO2 on dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. J. Mater. Sci. 26(11), 9026–9030 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mechanical EngineeringShandong University of Science and TechnologyTaianChina
  2. 2.Taian City Central HospitalTaianChina

Personalised recommendations