Magnetic coupling in 3D-hierarchical MnO2 microsphere

  • Muhammad Umair Farooq
  • Zahir Muhammad
  • Syed Khalid
  • Khushbu Fatima
  • Bingsuo ZouEmail author


The development of new routes for the synthesis of the magnetic nanostructures with low cost, simple and rapid growth has inspired as alternative materials in a wide range of applications. In this report, 3D-hierarchical MnO2 microspheres with an ultrathin nanosheet structure have been synthesized by microwave heating method. X-ray diffraction analysis exhibit the microcrystalline nature of microspheres and (211) is the major pattern with the highest intensity. High purity and surface adsorbed oxygen species have been detected by valance state of microspheres. The magnetic properties of microsphere α-MnO2 investigated experimentally and combined with density functional theory (DFT) calculations, suggest the coexistence of ferromagnetic (FM) and antiferromagnetic (AFM) interaction in their nanostructures. The observed FM state is arising from noncollinear magnetic field that tilts two AFM Mn spins consequently, which make a distortion through intermediate oxygen ion in the crystal structure. While, the canted angle between two Mn sublattices lead them to a weak FM state. Similarly, the superexchange interaction is also responsible for magnetic ordering in the adjacent O ion, that can help to exchange magnetic information by direct electron hops of Mn–Mn chain. This is further confirmed from our DFT calculations. They may be found the strong potential for alternative materials other than partially oxidized metal nanoparticles.


  1. 1.
    J. Wang, J. Liu, Y. Zhou, P. Hodgson, Y. Li, One-pot facile synthesis of hierarchical hollow microspheres constructed with MnO2 nanotubes and their application in lithium storage and water treatment. RSC Adv. 3(48), 25937–25943 (2013)CrossRefGoogle Scholar
  2. 2.
    W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, J.T. Park, Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 43(9), 1115–1117 (2004)CrossRefGoogle Scholar
  3. 3.
    X. Wang, Y. Li, Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002)CrossRefGoogle Scholar
  4. 4.
    F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, P. Shen, Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45(5), 2038–2044 (2006)CrossRefGoogle Scholar
  5. 5.
    G. Zhao, J. Li, L. Jiang, H. Dong, X. Wang, W. Hu, Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 3(2), 433–437 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Khalid, C. Cao, L. Wang, Y. Zhu, Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 6, 22699 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Yang, X. Zhou, W. James, S. Malik, C. Wang, Growth and magnetic properties of MnO 2-δ nanowire microspheres. Appl. Phys. Lett. 85(15), 3160–3162 (2004)CrossRefGoogle Scholar
  8. 8.
    J. Li, Y. Wang, B. Zou, X. Wu, J. Lin, L. Guo, Q. Li, Magnetic properties of nanostructured Mn oxide particles. Appl. Phys. Lett. 70(22), 3047–3049 (1997)CrossRefGoogle Scholar
  9. 9.
    G.H. Lee, S.H. Huh, J.W. Jeong, B.J. Choi, S.H. Kim, H.-C. Ri, Anomalous magnetic properties of MnO nanoclusters. J. Am. Chem. Soc. 124(41), 12094–12095 (2002)CrossRefGoogle Scholar
  10. 10.
    U. Khan, W. Li, N. Adeela, M. Irfan, K. Javed, C. Wan, S. Riaz, X. Han, Magnetic response of hybrid ferromagnetic and antiferromagnetic core–shell nanostructures. Nanoscale 8(11), 6064–6070 (2016)CrossRefGoogle Scholar
  11. 11.
    W.H. Meiklejohn, C.P. Bean, New magnetic anisotropy. Phys. Rev. 105(3), 904–913 (1957)CrossRefGoogle Scholar
  12. 12.
    S. Thirumalairajan, K. Girija, M. Sudha, P. Maadeswaran, J. Chandrasekaran, Structural and optical investigation of manganese oxide thin films by spray pyrolysis technique. Optoelectron. Adv. Mater. Rapid Commun. 2(12), 779–781 (2008)Google Scholar
  13. 13.
    K.J. Kim, Y.R. Park, Sol–gel growth and structural and optical investigation of manganese-oxide thin films: structural transformation by Zn doping. J. Cryst. Growth 270(1), 162–167 (2004)CrossRefGoogle Scholar
  14. 14.
    G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)CrossRefGoogle Scholar
  15. 15.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)CrossRefGoogle Scholar
  16. 16.
    Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, B. Huang, Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6(2), 1695–1701 (2012)CrossRefGoogle Scholar
  17. 17.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758 (1999)CrossRefGoogle Scholar
  18. 18.
    H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)CrossRefGoogle Scholar
  19. 19.
    S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on Its electrochemical capacitance properties. J. Phys. Chem. C 112(11), 4406–4417 (2008)CrossRefGoogle Scholar
  20. 20.
    Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21(12), 2366–2375 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16(16), 3184–3190 (2004)CrossRefGoogle Scholar
  22. 22.
    J. Yi, J. Ding, Y. Feng, G. Peng, G. Chow, Y. Kawazoe, B. Liu, J. Yin, S. Thongmee, Size-dependent magnetism and spin-glass behavior of amorphous NiO bulk, clusters, and nanocrystals: experiments and first-principles calculations. Phys. Rev. B 76(22), 224402 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Yi, J. Ding, Z. Zhao, B. Liu, High coercivity and exchange coupling of Ni∕ NiO nanocomposite film. J. Appl. Phys. 97(10), 10K306 (2005)CrossRefGoogle Scholar
  24. 24.
    B.A. Frandsen, M. Brunelli, K. Page, Y.J. Uemura, J.B. Staunton, S.J. Billinge, Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory. Phys. Rev. Lett. 116(19), 197204 (2016)CrossRefGoogle Scholar
  25. 25.
    T.-C. Han, W.-L. Hsu, W.-D. Lee, Grain size-dependent magnetic and electric properties in nanosized YMnO3 multiferroic ceramics. Nanoscale Res. Lett. 6(1), 201 (2011)CrossRefGoogle Scholar
  26. 26.
    N. Yamamoto, T. Endo, M. Shimada, T. Takada, Single crystal growth of α-MnO2. Jpn. J. Appl. Phys. 13(4), 723 (1974)CrossRefGoogle Scholar
  27. 27.
    W. Li, R. Zeng, Z. Sun, D. Tian, S. Dou, Uncoupled surface spin induced exchange bias in α-MnO2 nanowires. Sci. Rep. 4, 6641 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Umair Farooq
    • 1
  • Zahir Muhammad
    • 2
  • Syed Khalid
    • 3
  • Khushbu Fatima
    • 4
  • Bingsuo Zou
    • 1
    Email author
  1. 1.Beijing Key Laboratory of Nanophotonic and Ultrafine Optoelectronic Systems, School of PhysicsBeijing Institute of TechnologyBeijingChina
  2. 2.National Synchrotron Radiation Laboratory, Center for Excellence in NanoscienceChinese Academy of Sciences, University of Science and Technology of ChinaHefeiChina
  3. 3.Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of TechnologyBeijingChina
  4. 4.Department of OptometryThe University of FaisalabadFaisalabadPakistan

Personalised recommendations