Advertisement

Enhanced LED-light-driven photocatalytic antibacterial by g-C3N4/BiOI composites

  • Yeping LiEmail author
  • Qian Wang
  • Liying Huang
  • Xiuquan Xu
  • Meng Xie
  • Hao Wang
  • Shuquan Huang
  • Fei Zhang
  • Zhengyun Zhao
  • Juan Yang
Article
  • 53 Downloads

Abstract

g-C3N4/BiOI composites with different ratios were prepared by in-situ generation route at room temperature and applied in antibacterial investigation. Detailed information of the composites was characterized by XRD, TEM, HRTEM, SEM, EDS, BET, XPS, FT–IR, UV–Vis, photocurrent and EIS. The obtained g-C3N4/BiOI composites presented excellent antibacterial performance toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under LED track light, with the complete inactivation of bacterial within 30 min. The decomposition of bacterial cells was observed by SEM. The bacterial mechanism was investigated by trapping experiments: holes (h+), superoxide anion free radical (O2) and hydrogen peroxide (H2O2) were identified as active species for bacterial inactivation, and h+ had a main effect in the antibacterial process. The enhanced photocatalytic activities were assigned to an efficient separation and transition of electrons (e) and h+ in photocatalytic antibacterial process. This work indicated the g-C3N4/BiOI composites are promising photocatalytic antibacterial materials for water disinfection.

Notes

Acknowledgements

National Nature Science Foundation of China (Grant Nos. 21406094, 21506079 and 51572114), Postdoctoral Foundation of China (Grant No. 2015M571693) and Foundation of Jiangsu University (Grant No. 14JDG184) were genuinely appreciated.

References

  1. 1.
    S. Richardson, M. Plewa, E. Wagner, R. Schoeny, D. Demarini, Mutat. Res. 636, 178–242 (2007)CrossRefGoogle Scholar
  2. 2.
    L.A. Bernal-Martínez, C. Barrera-Díaz, C. Solís-Morelos, R. Natividad, Chem. Eng. J. 165, 71–77 (2010)CrossRefGoogle Scholar
  3. 3.
    N. Le-Minh, S.J. Khan, J.E. Drewes, R.M. Stuetz, Water Res. 44, 4295–4323 (2010)CrossRefGoogle Scholar
  4. 4.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997–3027 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Wang, Z. Jiang, T. An, G. Li, H. Zhao, P.K. Wong, Environ. Sci. Technol. 52, 4774–4784 (2018)CrossRefGoogle Scholar
  6. 6.
    W. Wang, T. An, G. Li, D. Xia, H. Zhao, J.C. Yu, P.K. Wong, Appl. Catal. B 217, 570–580 (2017)CrossRefGoogle Scholar
  7. 7.
    W. Wang, G. Li, D. Xia, T. An, H. Zhao, P.K. Wong, Environ. Sci.: Nano 4, 782–799 (2017)Google Scholar
  8. 8.
    H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Appl. Microbiol. Biotechnol. 90, 1847–1868 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Ma, P.L. Williams, S.A. Diamond, Environ. Pollut. 172, 76–85 (2013)CrossRefGoogle Scholar
  10. 10.
    L.K. Adams, D.Y. Lyon, P.J.J. Alvarez, Water Res. 40, 3527–3532 (2006)CrossRefGoogle Scholar
  11. 11.
    Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Water Res. 42, 4591–4602 (2008)CrossRefGoogle Scholar
  12. 12.
    S.L. Wang, S.H. Lin, D.Q. Zhang, G.S. Li, M.K.H. Leung, Appl. Catal. B 215, 85–92 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, X.C. Wang, M. Antonietti, Angew. Chem.-Int. Ed. 51, 68–89 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18, 4893–4908 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27, 2150–2176 (2015)CrossRefGoogle Scholar
  16. 16.
    J.C. Tong, L. Zhang, F. Li, M.M. Li, S.K. Cao, Phys. Chem. Chem. Phys. 17, 23532–23537 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25, 2452–2456 (2013)CrossRefGoogle Scholar
  18. 18.
    X. Bai, L. Wang, R. Zong, Y. Zhu, The J. Phys. Chem. C 117, 9952–9961 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci.: Mater. Electron. 29, 1719–1747 (2017)Google Scholar
  20. 20.
    S. Cao, H. Li, T. Tong, H. Chen, A. Yu, J. Yu, H. Chen, Adv. Funct. Mater. 28, 1802169 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Cao, Q. Huang, B. Zhu, J. Yu, J. Power Sources 351, 151–159 (2017)CrossRefGoogle Scholar
  22. 22.
    S.P. Adhikari, H.R. Pant, J.H. Kim, H.J. Kim, C.H. Park, C.S. Kim, Colloids Surf. A 482, 477–484 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Appl. Catal. B 186, 77–87 (2016)CrossRefGoogle Scholar
  24. 24.
    W. Bing, Z. Chen, H. Sun, P. Shi, N. Gao, J. Ren, X. Qu, Nano Res. 8, 1648–1658 (2015)CrossRefGoogle Scholar
  25. 25.
    W. Wang, J.C. Yu, D. Xia, P.K. Wong, Y. Li, Environ. Sci. Technol. 47, 8724–8732 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Xu, Y. Li, X. Zhou, Y. Li, Z.-D. Gao, Y.-Y. Song, P. Schmuki, Chem.-Eur. J. 22, 3947–3951 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Cheng, B. Huang, Y. Dai, Nanoscale 6, 2009–2026 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Li, Y. Yu, L. Zhang, Nanoscale 6, 8473–8488 (2014)CrossRefGoogle Scholar
  29. 29.
    R. Hao, X. Xiao, X. Zuo, J. Nan, W. Zhang, J. Hazard. Mater. 209, 137–145 (2012)CrossRefGoogle Scholar
  30. 30.
    L. Ye, J. Chen, L. Tian, J. Liu, T. Peng, K. Deng, L. Zan, Appl. Catal. B 130, 1–7 (2013)Google Scholar
  31. 31.
    J. Liang, C. Shan, X. Zhang, M. Tong, Chem. Eng. J. 279, 277–285 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Ning, H. Lin, Y. Tong, X. Zhang, Q. Lin, Y. Zhang, J. Long, X. Wang, Appl. Catal. B 204, 1–10 (2017)CrossRefGoogle Scholar
  33. 33.
    L. Zhu, C. He, Y. Huang, Z. Chen, D. Xia, M. Su, Y. Xiong, S. Li, D. Shu, Sep. Purif. Technol. 91, 59–66 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Liang, J. Deng, M. Li, T. Xu, M. Tong, Colloids Surf. B 147, 307–314 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Di, J. Xia, S. Yin, H. Xu, L. Xu, Y. Xu, M. He, H. Li, J. Mater. Chem. A 2, 5340–5351 (2014)CrossRefGoogle Scholar
  36. 36.
    D. Jiang, L. Chen, J. Zhu, M. Chen, W. Shi, J. Xie, Dalton Trans. 42, 15726–15734 (2013)CrossRefGoogle Scholar
  37. 37.
    J.C. Wang, H.C. Yao, Z.Y. Fan, L. Zhang, J.S. Wang, S.Q. Zang, Z.J. Li, ACS Appl. Mater. Interfaces 8, 3765–3775 (2016)CrossRefGoogle Scholar
  38. 38.
    F. Zhang, L.P. Wang, M. Xiao, F. Liu, X. Xu, E.D. Du, J. Mater. Res. 33, 201–212 (2018)CrossRefGoogle Scholar
  39. 39.
    S.R. Wang, W.W. Tu, Z.H. Dai, Analyst 143, 1775–1779 (2018)CrossRefGoogle Scholar
  40. 40.
    H. An, B. Lin, C. Xue, X. Yan, Y. Dai, J. Wei, G. Yang, Chin. J. Catal. 39, 654–663 (2018)CrossRefGoogle Scholar
  41. 41.
    H. Huang, W. Lin, L. Xie, J. Chen, Environ. Sci. 38, 3979–3986 (2017)Google Scholar
  42. 42.
    M. Xie, W. Wei, Z. Jiang, Y. Xu, J. Xie, Ceram. Int. 42, 4158–4170 (2016)CrossRefGoogle Scholar
  43. 43.
    B. Liu, X. Han, Y. Wang, X. Fan, Z. Wang, J. Zhang, H. Shi, J. Mater. Sci.: Mater. Electron. 29, 14300–14310 (2018)Google Scholar
  44. 44.
    S. Vignesh, A.L. Muppudathi, J.K. Sundar, J. Mater. Sci.: Mater. Electron. 29, 10784–10801 (2018)Google Scholar
  45. 45.
    C. Liu, B. Chai, J. Mater. Sci.: Mater. Electron. 26, 2296–2304 (2015)Google Scholar
  46. 46.
    J. Jiang, X. Zhang, P. Sun, L. Zhang, J. Phys. Chem. C 115, 20555–20564 (2011)CrossRefGoogle Scholar
  47. 47.
    L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Dalton Trans. 42, 8606–8616 (2013)CrossRefGoogle Scholar
  48. 48.
    L. Song, Y. Pang, Y. Zheng, L. Ge, Appl. Phys. A 123, 500–510 (2017)CrossRefGoogle Scholar
  49. 49.
    K. Li, X. Zeng, S. Gao, L. Ma, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, Nano Res. 9, 1969–1982 (2016)CrossRefGoogle Scholar
  50. 50.
    C. Chang, L. Zhu, S. Wang, X. Chu, L. Yue, ACS Appl. Mater. Interfaces. 6, 5083–5093 (2014)CrossRefGoogle Scholar
  51. 51.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397–10401 (2009)CrossRefGoogle Scholar
  52. 52.
    Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 115, 7355–7363 (2011)CrossRefGoogle Scholar
  53. 53.
    Y. Li, S. Wu, L. Huang, H. Xu, R. Zhang, M. Qu, Q. Gao, H. Li, J. Phys. Chem. Solids 76, 112–119 (2015)CrossRefGoogle Scholar
  54. 54.
    H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces 7, 482–492 (2015)CrossRefGoogle Scholar
  55. 55.
    L. Yosefi, M. Haghighi, Appl. Catal. B 220, 367–378 (2018)CrossRefGoogle Scholar
  56. 56.
    K. Dai, L. Lu, C. Liang, G. Zhu, Q. Liu, L. Geng, J. He, Dalton Trans. 44, 7903–7910 (2015)CrossRefGoogle Scholar
  57. 57.
    P. Li, X. Zhao, C.J. Jia, H. Sun, L. Sun, X. Cheng, L. Liu, W. Fan, J. Mater. Chem. A 1, 3421–3429 (2013)CrossRefGoogle Scholar
  58. 58.
    L. Chen, D. Jiang, T. He, Z. Wu, M. Chen, CrystEngComm 15, 7556–7563 (2013)CrossRefGoogle Scholar
  59. 59.
    A.C. Mera, C.A. Rodrıguez, M.F. Melendrez, H. Valdes, J. Mater. Sci. 52, 944–954 (2017)CrossRefGoogle Scholar
  60. 60.
    R. Wang, X. Kong, W. Zhang, W. Zhu, L. Huang, J. Wang, X. Zhang, X. Liu, N. Hu, Y. Suo, J. Wang, Appl. Catal. B 225, 228–237 (2018)CrossRefGoogle Scholar
  61. 61.
    X. Nie, G. Li, M. Gao, H. Sun, X. Liu, H. Zhao, P.-K. Wong, T. An, Appl. Catal. B 147, 562–570 (2014)CrossRefGoogle Scholar
  62. 62.
    W. Wang, Y. Yu, T. An, G. Li, H.Y. Yip, J.C. Yu, P.K. Wong, Environ. Sci. Technol. 46, 4599–4606 (2012)CrossRefGoogle Scholar
  63. 63.
    X. Peng, T.W. Ng, G. Huang, W. Wang, T. An, P.K. Wong, Chemosphere 166, 521–527 (2017)CrossRefGoogle Scholar
  64. 64.
    G. Li, X. Nie, J. Chen, Q. Jiang, T. An, P.K. Wong, H. Zhang, H. Zhao, H. Yamashita, Water Res. 86, 17–24 (2015)CrossRefGoogle Scholar
  65. 65.
    S. Tan, Z. Xing, J. Zhang, Z. Li, X. Wu, J. Cui, J. Kuang, Q. Zhu, W. Zhou, J. Catal. 357, 90–99 (2018)CrossRefGoogle Scholar
  66. 66.
    S. Huang, Y. Xu, T. Zhou, M. Xie, Y. Ma, Q. Liu, L. Jing, H. Xu, H. Li, Appl. Catal. B 225, 40–50 (2018)CrossRefGoogle Scholar
  67. 67.
    Y. Xu, Q. Liu, C. Liu, Y. Zhai, M. Xie, L. Huang, H. Xu, H. Li, J. Jing, J. Colloid Interface Sci. 512, 555–566 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PharmacyJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  3. 3.School of Material Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations