Advertisement

Structural and luminescence properties of Eu3+ doped LaAlO3 nanophosphors by hydrothermal method

  • P. Ankoji
  • B. Hemalatha RudramadeviEmail author
Article
  • 22 Downloads

Abstract

A series of La1−xAlO3: xEu3+ (x = 0, 2, 4, 6 and 8 mol%) nanophosphors have been synthesized by a hydrothermal technique and were investigated by an X-ray powder diffractometer, field emission scanning electron microscopy, high-resolution transmission electron microscopy and fourier transform infrared spectroscopy. Further, photoluminescent studies have also been orderly explored under the near-ultraviolet light excitation. When excited with 395 nm, the Eu3+: LaAlO3 nanophosphors emission peaks observed at 579, 591, 620, 649 and 700 nm due to the 5D07Fj (J = 0–4) transitions of Eu3+ ions. The prominent emission peak was perceived at 620 nm, which associated to the 5D07F2 hypersensitive transition of Eu3+ ion. The optimum doping concentration of Eu3+ in LaAlO3 host is around 6 mol% and the concentration quenching effect is through the dipole–dipole interaction. The Commission International de I’Eclairage (CIE) color co-ordinates were determined from emission spectra and the values (x, y) were closer to National Television Standard Committee typical value of red emission. As an outcome, the prepared nanophosphors are highly suitable for red component of white light emitting devices.

Notes

Acknowledgements

The authors acknowledge MoU-DAE-BARNS project (No. 2009/34/36/BRNS/3174), Department of Physics, S.V. University, Tirupati, India for extending PL characterization facility. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

References

  1. 1.
    K. Omri, O.M. Lemine, L.El Mir, Ceram. Int. 43, 6585–6591 (2017)CrossRefGoogle Scholar
  2. 2.
    H.S. Jang, Y.H. Won, D.Y. Jeon, Improvement of electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors. Appl. Phys. B 95, 715–720 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Omri, A. Alyamani, L.El Mir, Appl. Phys. A 124, 215 (2018)CrossRefGoogle Scholar
  4. 4.
    N. Alonizan, S. Rabaoui, K. Omri, R. Qindeel, Appl. Phys. A 124, 710 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Merikhi, C. Feldmann, Homogeneous coatings of nanosized Fe2O3 particles onY2O2S:Eu3+. J. Mater. Sci. 35, 3959–3961 (2000)CrossRefGoogle Scholar
  6. 6.
    M.M. Haque, D.K. Kim, Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M = Ba, Sr and Ca) novel red-emitting phosphors. Mater. Lett. 63, 793–796 (2009)CrossRefGoogle Scholar
  7. 7.
    C. Guo, L. Luan, C. Chen, D. Huang, Q. Su, Preparation of Y2O2S: Eu3+ phosphors by a novel decomposition method. Mater. Lett. 62, 600–602 (2008)CrossRefGoogle Scholar
  8. 8.
    J.G. Wu, S.K. Shi, X.L. Wang, J.B. Li, R.L. Zong, W. Chen, Controlled synthesis and optimum luminescence of Sm3+—activated nano/submicroscale particles by a facile approach. J. Mater. Chem. C 2, 2786–2792 (2014)CrossRefGoogle Scholar
  9. 9.
    V. Singh, S. Watanabe, T.K. Gundu Rao, J.F.D. Chubaci, H.Y. Kwak, Characterization, photoluminescence, thermally stimulated luminescence and electron spin resonance studies of Eu3+ doped LaAlO3 phosphor. Solid State Sci. 13, 66–71 (2011)CrossRefGoogle Scholar
  10. 10.
    Xu Heng Pan, J. Li, L. Zhang, H. Guan, Su, F. Teng, Synthesis and luminescent properties of NaZnPO4:Eu3+ red phosphors for white LEDs. Mater. Lett. 155, 106–108 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Devender, S. Kadyan, Synthesis and optical characterization of trivalent europium doped M4Al2O9 (M = Y, Gd and La) nanomaterials for display applications. J. Mater. Sci. Mater. Electron. 28, 11142–11150 (2017)CrossRefGoogle Scholar
  12. 12.
    W.A.N.G. Yeqing, T.A.N.G. jieqin, H.U.A.N.G. Xinyang, J.I.A.N.G. Liang, Luminescence properties of Eu3+:NaGd(WO4)2 nanoparticles and nanorods. J. Rare Earths 34, 118–124 (2016)CrossRefGoogle Scholar
  13. 13.
    S.K. Shi, M. Hossu, R. Hall, W. Chen, Solution combustion synthesis, photoluminescence and X-ray luminescence of Eu-doped nanoceria CeO2:Eu. J. Mater. Chem. 22, 23461–23467 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Chandradass, M. Balasubramanian, K.H. Kim, Synthesis and characterization of LaAlO3 nanopowders by various fuels. Mater. Manuf. Process 25, 1449–1453 (2010)CrossRefGoogle Scholar
  15. 15.
    H.W. Chen, C.R. Yang, J.H. Zhang, W. He, Y. Liao, Q.Z. Zhang, S.X. Zheng, G.H. Lei, High performance distributed CPW phase shifters with etched BST thin films on Ф 3″ LaAlO3 substrates. Solid State Sci. 14, 117–120 (2012)CrossRefGoogle Scholar
  16. 16.
    W.E. Mahmoud, A.A. Al-Ghamdi, F.A. Al-Agel, E. Al-Arfaj, F.S. Shokr, S.A. Al-Gahtany, A. Alshahrie, O. Jalled, L.M. Bronstein, G.W. Beall, Structural, magnetic and optical properties of a dilute magnetic semi-conductor based on Ce1–xCoxO2 thin film grown on LaAlO3. Mater. Res. Bull. 72, 154–159 (2015)CrossRefGoogle Scholar
  17. 17.
    C.H. Jia, S. Wang, Y.H. Wu, Y.H. Chen, X.W. Sun, W.F. Zhang, Epitaxial properties of ZnO thin films on LaAlO3 substrates by pulsed laser deposition. J. Cryst. Growth 421, 19–22 (2015)CrossRefGoogle Scholar
  18. 18.
    J.H. Fu, J.X. Zhao, T.L. Sa, N. Qin, D.H. Bao, Photoluminescent and dielectric properties of Eu3+-doped LaAlO3 thin films fabricated by chemical solution deposition method. Appl. Surf. Sci. 286, 1–6 (2013)CrossRefGoogle Scholar
  19. 19.
    Z.Y. Mao, Y.C. Zhu, Q.N. Fei, D.J. Wang, Investigation of 515 nm green-light emission for full color emission LaAlO3 phosphor with varied valence Eu. J. Lumin. 131, 1048–1051 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Jiang, D.H. Fang, C. Lu, Z.M. Dou, G. Wang, F. Zhang, T.J. Zhang, Solid-state reaction mechanism and microwave dielectric properties of CaTiO3–LaAlO3 ceramics. J. Alloys Compd. 638, 443–447 (2015)CrossRefGoogle Scholar
  21. 21.
    C.A. da Silva, P.E.V. de Miranda, Synthesis of LaAlO3 based materials for potential use as methane-fueled solid oxide fuel cell anodes. Int. J. Hydrog. Energy 40, 10002–10015 (2015)CrossRefGoogle Scholar
  22. 22.
    L.X. Li, Z.D. Gao, Y.R. Liu, H.C. Cai, S. Li, Influence of LaAlO3 additive to MgTiO3–CaTiO3 ceramics on sintering behavior and microwave dielectric properties. Mater. Lett. 140, 5–8 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Jancar, D. Suvorov, M. Valant, G. Drazic, J. Eur. Ceram. Soc. 23, 1391 (2003)CrossRefGoogle Scholar
  24. 24.
    C. Boronat, T. Rivera, J. Garcia-Guinea, Radiat. Phys. Chem. 130, 236–242 (2017)CrossRefGoogle Scholar
  25. 25.
    B.C. Lux, R.D. Clark, A. Silazar, L.K. Sveum, M.A. Krebs, J. Am. Ceram. Soc. 76, 2669 (1993)CrossRefGoogle Scholar
  26. 26.
    E. Taspinar, A.C. Tas, J. Am. Ceram. Soc. 80, 133 (1997)CrossRefGoogle Scholar
  27. 27.
    W.H. Hall, G.K. Williamson, Proc. Phys. Soc. Sect. B 64B, 937–946 (1951)CrossRefGoogle Scholar
  28. 28.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  29. 29.
    H.M. Rietveld, Acta Crystallogr 22, 151 (1967)CrossRefGoogle Scholar
  30. 30.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  31. 31.
    A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Cryst. 46, 1231–1235 (2013)CrossRefGoogle Scholar
  32. 32.
    D. Juan Jiang, C. Fang, Z. Lu, Dou, Solid-state reaction mechanism and microwave dielectric properties of CaTiO3–LaAlO3 ceramics. J. Alloy. Compd. 638, 443–447 (2015)CrossRefGoogle Scholar
  33. 33.
    C. Shivakumara, R. Saraf, S. Behera, Synthesis of Eu3+—activated BaMoO4 phosphors and their Judd–Ofelt analysis: applications in lasers and white LEDs. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151, 141–148 (2015)CrossRefGoogle Scholar
  34. 34.
    D. Thangaraju, A. Durairajan, D. Balaji, S. Moorthy, Babu, SiO2/KGd(WO4)2:Eu3+ composite luminescent nanoparticles: Synthesis and characterization. Mater. Chem. Phys. 135, 1115–1121 (2012)CrossRefGoogle Scholar
  35. 35.
    B. Fang Lei, Y.Hao-Hong Chen, Solid-state synthesis, characterization and luminescent properties of Eu3+ doped gadolinium tungstate. J. Solid State Chem. 181, 2845–2851 (2008)CrossRefGoogle Scholar
  36. 36.
    J. Tauc, in Optical Properties of Solids, ed. by F. Abeles (North-Holland, Amsterdam, 1970)Google Scholar
  37. 37.
    P.J. Dereń, B. Bondzior, G. Banachb, B. Brzostowski, How the size of LaAlO3 nanocrystals changes its spectroscopic properties. J. Lumin. 193, 73–78 (2018)CrossRefGoogle Scholar
  38. 38.
    A. Wei Shi, H. Feng, Z. Tang, Ding, Preparation, characterization, and luminescence of Eu3+ doped gadolinium tungstate, Y3Al5O12: Ce phosphor, and their mixtures. Opt. Mater. 35, 609–616 (2013)CrossRefGoogle Scholar
  39. 39.
    G. Blasse, W.L. Wanmaker, J.W. Ter Vrugt, Some new classes of efficient Eu3+ activated phosphors. J. Electrochem. Soc. 115, 673 (1968)CrossRefGoogle Scholar
  40. 40.
    L.G. Van Uitert, J. Electrochem. Soc. 114, 1048 (1967)CrossRefGoogle Scholar
  41. 41.
    M.N. Huang, Q.Y. MaYY, X. Zhang, Spectrochim. Acta A 115, 767–771 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations