Effect of doping Gd2O3 on dielectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics by sol–gel method

  • Wenshuo Kang
  • Zhanshen Zheng
  • Yuanliang Li
  • Rujie Zhao
  • Wenxin Dun
  • Yufan Wang


The effects of sintering temperature and doping amount of gadolinium ions on the microstructures and electrical properties of sol gel derived Ba (Zr0.1Ti0.9) O3 + xGd ceramics were investigated in this manuscript. XRD analysis showed that the main crystalline phase of BZT-xGd ceramic samples exhibit a perovskite structure without significantly change. The sample sintered at 1350 °C and doped with gadolinium ions of 0.5 mol% has uniform grain size and compact morphology. And the sample(1350 °C—0.5 mol%) also has a high piezoelectric charge coefficient of 131.33 pC/N, large plane electromechanical coupling coefficient of 0.22, high dielectric constant of 10504, and small dielectric loss of 0.01. The correlation of dielectric and piezoelectric properties of BZT-xGd ceramics with doping amount of Gd3+ ion has been explained by the lattice theory.



This work was supported by Science and Technology Support Project of Hebei Province, China (Grant No. 15211111), and the National Natural Science Foundation of China (Grant No. 51502075).


  1. 1.
    M.M.V. Petrović, R. Grigalaitis, N. Ilic et al., Interdependence between structure and electrical characteristics in Sm-doped barium titanate. J. Alloys Compd. 724, 959–968 (2017)CrossRefGoogle Scholar
  2. 2.
    M.M.V. Petrović, J.D. Bobić, T. Ramoška et al., Electrical properties of lanthanum doped barium titanate ceramics. Mater. Charact. 62(10), 1000–1006 (2011)CrossRefGoogle Scholar
  3. 3.
    W.X. Dun, Y.L. Li, Z.S. Zheng et al., Influence of doping Yb2O3 on dielectric properties of BaTi0.95Sn0.05O3 ceramics. Dig. J. Nanomater. Biostruct. 12(4), 1081–1087 (2017)Google Scholar
  4. 4.
    H. Sun, S. Duan, X. Liu et al., Lead-free Ba0.98Ca0.02Zr0.02Ti0.98O3 ceramics with enhanced electrical performance by modifying MnO2 doping content and sintering temperature. J. Alloys Compd. 670, 262–267 (2016)CrossRefGoogle Scholar
  5. 5.
    M. Ganguly, S.K. Rout et al., Characterization of A-site deficient samarium doped barium titanate. Physica B 411(7), 26–34 (2013)CrossRefGoogle Scholar
  6. 6.
    G. Wu, J. Li, K. Wang et al., In situ synthesis and preparation of TiO2/polyimide composite containing phenolphthalein functional group. J. Mater. Sci. 28(9), 6544–6551 (2017)Google Scholar
  7. 7.
    Z. Yu, C. Ang, R. Guo et al., Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O3, ceramics under dc electric field. Appl. Phys. Lett. 81(7), 1285–1287 (2002)CrossRefGoogle Scholar
  8. 8.
    J. Ravez, C. Broustera, A. Simon, Lead-free ferroelectric relaxor ceramics in the BaTiO3-BaZrO3-CaTiO3 system. J. Mater. Chem. 9(7), 1609–1613 (1999)CrossRefGoogle Scholar
  9. 9.
    U. Weber, G. Greuel, U. Boettger et al., Dielectric properties of Ba(Zr,Ti)O3-based ferroelectrics for capacitor applications. J. Am. Ceram. Soc. 84(4), 759–766 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Bhaskar Reddy, M.S. Ramachandra Rao, K. Prasad Rao, Observation of high permittivity in Ho substituted BaZr0.1Ti0.9O3 ceramics. Appl. Phys. Lett. 91(2), 91 (2007)CrossRefGoogle Scholar
  11. 11.
    X. Chou, J. Zhai, H. Jiang et al., Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102(8), 5–237 (2007)CrossRefGoogle Scholar
  12. 12.
    T. Badapanda, S.K. Rout, S. Panigrahi et al., Phase formation and dielectric study of Bi doped BaTi0.75Zr0.25O3 ceramic. Curr. Appl. Phys. 9(4), 727–731 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Ganguly, S.K. Rout, T.P. Sinha et al., Characterization and rietveld refinement of A-site deficient lanthanum doped barium titanate. J. Alloys Compd. 579(6), 473–484 (2013)CrossRefGoogle Scholar
  14. 14.
    J.D. Birchall, Chemical synthesis of advanced ceramic materials, by David Segal, Cambridge University Press, Cambridge 1991, 182 pp, £ 15.00, paperback, ISBN 0-521-42418-6. Adv. Mater. 4(4), 311–312 (1992)CrossRefGoogle Scholar
  15. 15.
    D. Wang, M. Wang, F. Liu et al., Sol-gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram. Int. 41(7), 8768–8772 (2015)CrossRefGoogle Scholar
  16. 16.
    R.B. Yang, W.G. Fu, X.Y. Deng et al., Preparation and characterization of (Ba0.88Ca0.12)(Zr0.12Ti0.88)O3 powders and ceramics produced by sol-gel process. Adv. Mater. Res. 148–149, 1062–1066 (2011)CrossRefGoogle Scholar
  17. 17.
    A.V. Polotai, A.V. Ragulya, C.A. Randall, Preparation and size effect in pure nanocrystalline barium titanate ceramics. Ferroelectrics 288(1), 93–102 (2003)CrossRefGoogle Scholar
  18. 18.
    S.K. Das, R.N. Mishra, B.K. Roul, Magnetic and ferroelectric properties of Ni doped BaTiO 3. Solid State Commun. 191(191), 19–24 (2014)CrossRefGoogle Scholar
  19. 19.
    D.J. Shin, J. Kim, S.J. Jeong et al., Piezoelectric and ferroelectric properties in Ba(Zr,Ti)O3, and CuO-Ba(Zr,Ti)O3, ceramics. Mater. Res. Bull. 82, 7–10 (2016)CrossRefGoogle Scholar
  20. 20.
    T. Chen, G. Wang, J. Zhou et al., Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics. J. Mater. Sci. 47(11), 4612–4619 (2012)CrossRefGoogle Scholar
  21. 21.
    D. Liang, X. Zhu, J. Zhu et al., Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr,Ti)O 3, lead-free piezoelectric ceramics. Ceram. Int. 40(2), 2585–2592 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Lin, D. Xiao, J. Zhu et al., Piezoelectric and ferroelectric properties of lead-free [Bi1 – y (Na1 – x–yLix)]0.5BayTiO3, ceramics. J. Eur. Ceram. Soc. 26(15), 3247–3251 (2006)CrossRefGoogle Scholar
  23. 23.
    Y. Tian, L. Wei, X. Chao et al., Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3. Ceram. J. Am. Ceram. Soc. 96(2), 496–502 (2012)Google Scholar
  24. 24.
    S. Yan, Z. Zheng, Y. Li et al., Effect of internal stresses on temperature-dependent dielectric properties of Fe-doped BZT ceramics. Ceram. Int. 43(15), 12605–12608 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.F. Wang, Z.S. Zheng, Y.L. Li et al., Effect of Nb2O5 doping on dielectric properties of BaTi0.9Sn0.1O3 ceramics. Dig. J. Nanomater. Biostruct. 1(1), 193–199 (2018)Google Scholar
  26. 26.
    S.W. Zhang, H. Zhang, B.P. Zhang et al., Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12O3) ceramics sintered in a protective atmosphere. J. Eur. Ceram. Soc. 29(15), 3235–3242 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Murakami, N.T. Ahmed, D. Wang et al., Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J. Eur. Ceram. Soc. 38(12), 4220–4231 (2018)CrossRefGoogle Scholar
  28. 28.
    E. Chandrakala, J.P. Praveen, B.K. Hazra et al., Effect of sintering temperature on structural, dielectric, piezoelectric and ferroelectric properties of sol–gel derived BZT-BCT ceramics. Ceram. Int. 42(4), 4964–4977 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Rubio-Marcos, J.J. Romero, M.G. Navarro-Rojero et al., Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J. Eur. Ceram. Soc. 29(14), 3045–3052 (2009)CrossRefGoogle Scholar
  30. 30.
    R. Waser, Electroceramics. Materials, properties, applications. A. By, Moulson, J.M. Herbert, Chapman & Hall, London 1990, 464 pp. hardcover, E 49, ISBN 0-412-29490-7. Adv. Mater. 4(10), 698–699 (1992)CrossRefGoogle Scholar
  31. 31.
    T.H. Dinh, H.Y. Lee, C.H. Yoon et al., Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics. J. Korean Phys. Soc. 62(7), 1004–1008 (2013)CrossRefGoogle Scholar
  32. 32.
    C. Ciomaga, M. Viviani, M.T. Buscaglia et al., Preparation and characterisation of the Ba(Zr,Ti)O3, ceramics with relaxor properties. J. Eur. Ceram. Soc. 27(13), 4061–4064 (2007)CrossRefGoogle Scholar
  33. 33.
    Y. Tian, S. Li, Y. Li et al., Diversiform electrical and thermal expansion properties of (1−x)Ba0.95Ca0.05Ti0.94Zr0.06O3−(x)Dy lead-free piezoelectric ceramics influenced by defect complexes. J. Mater. Sci. 53(16), 1–14 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenshuo Kang
    • 1
  • Zhanshen Zheng
    • 1
  • Yuanliang Li
    • 1
  • Rujie Zhao
    • 1
  • Wenxin Dun
    • 1
  • Yufan Wang
    • 1
  1. 1.Key Laboratory of Environment Functional Materials of Tangshan City, Hebei ProvincialKey Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and TechnologyTangshanChina

Personalised recommendations