Advertisement

Synthesis of polyfluorenes by oxidative polymerization, their characterization and implementation in organic solar cells

  • Arián Espinosa-Roa
  • María de Jesús Cruz-Carrillo
  • Arelis Ledesma-Juárez
  • Alejandra Montoya del Angel
  • Daniel Romero-Borja
  • Marisol Güizado-Rodríguez
  • Mario Rodríguez
  • Rosario Galindo
  • José Luis Maldonado
  • Victor Barba
Article
  • 78 Downloads

Abstract

Polyfluorene materials have demonstrated to be important components in the fabrication of organic solar cell devices, in both: the active and electron transport layers. The oxidative synthesis as well as optical and electrical properties of new polyfluorene copolymers containing 2,2′-(9,9-dioctyl-9H-fluorene-2,7-diyl) bistiophene and 3-alkylthiophene, alkyl = hexyl (PA1) and octyl (PA2) or 3,4-ethylenedioxythiophene (EDOT) (PM) were investigated. Changes in the HOMO–LUMO energy gap promoted for the insertion of EDOT ring were studied in thick film by using cyclic-voltammetry measurements and compared with the optical properties analyzed by UV–Visible spectroscopy. DFT calculations were used to investigate the possible electronic density distribution and conformational parameter for repetition units into the polymeric structure. Finally, these polymer were preliminary evaluated as donor materials into organic solar cells with architecture ITO/PEDOT:PSS/co-polymer:PC71BM/Field’s metal. Photovoltaic devices showed a very acceptable open circuit voltage (Voc) value, up to 0.92 V.

Notes

Acknowledgements

This work was supported by CONACyT CB2015-257543-Q (México) and CeMIE-Sol 207450/27 (México) call 2013-02, Fondo Sectorial CONACYT-SENER-SUSTENTABILIDAD ENERGETICA, AER thanks CONACYT by a postdoctoral fellowship. Also recognition to CIICAp-IICBA (UAEM), CIQ-IICBA (UAEM) for the use of facilities and the support services provided for this research.

Supplementary material

10854_2018_547_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1218 KB)

References

  1. 1.
    W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 139, 7148 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Wood, J.S. Kim, D.T. James, W.C. Tsoi, C.E. Murphy, J.S. Kim, J. Chem. Phys. 139, 064901–064901 (2013)CrossRefGoogle Scholar
  3. 3.
    W. Xu, X. Zhang, Q. Hu, L. Zhao, X. Teng, W.Y. Lai, R. Xia, J. Nelson, W. Huang, D.D.C. Bradley, Org. Electron. 15(6), 1244 (2014)CrossRefGoogle Scholar
  4. 4.
    Z. Zhu, Y. Bai, H.K.H. Lee, C. Mu, T. Zhang, L. Zhang, J. Wang, H. Yan, S.K. So, S. Yang, Adv. Funct. Mater. 24(46), 7357 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Tekoglu, M. Petzoldt, S. Stolz, U.H.F. Bunz, U. Lemmer, M. Hamburger, G. Hernandez-Sosa, ACS Appl. Mater. Interfaces 8(11), 7320 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Stolz, M. Petzoldt, S. Dück, M. Sendner, U.H.F. Bunz, U. Lemmer, M. Hamburger, G. Hernandez-Sosa, ACS Appl. Mater. Interfaces 8(20), 12959 (2016)CrossRefGoogle Scholar
  7. 7.
    B. SambathKumar, E. Varathan, V. Subramanian, N. Somanathan, New J. Chem. 40, 1377 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Liu, L. Hu, F. Wu, L. Chen, Y. Chen, ACS Appl. Mater. Interfaces 8(15), 9821 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Roth, S. Savagatrup, N.V. de los Santos, O. Hagemann, J.E. Carlé, M. Helgesen, F. Livi, E. Bundgaard, R.R. Søndergaard, F.C. Krebs, D.J. Lipomi, Chem. Mater. 28(7), 2363 (2016)CrossRefGoogle Scholar
  10. 10.
    T. Salim, S. Sun, L.H. Wong, L. Xi, Y.L. Foo, Y.M. Lam, J. Phys. Chem. C 114, 9459 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Svensson, F. Zhang, S.C. Veenstra, W.J.H. Verhees, J.C. Hummelen, J.M. Kroon, O. Inganäs, M.R. Andersson, Adv. Mater. 15(12), 988 (2003)CrossRefGoogle Scholar
  12. 12.
    M.H. Chen, J. Hou, Z. Hong, G. Yang, S. Sista, L.M. Chen, Y. Yang, Adv. Mater. 21, 4238 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Hellstrom, L.J. Lindgren, Y. Zhou, F. Zhang, O. Inganäs, M.R. Andersson, Polym. Chem. 1(8), 1272 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Bagui, A. Garg, B. Tyagi, V. Gupta, S.P. Singh, Chem. Commun. 54, 4001 (2018)CrossRefGoogle Scholar
  15. 15.
    O. Inganäs, F. Zhang, M.R. Andersson, Acc. Chem. Res. 42, 1731 (2009)CrossRefGoogle Scholar
  16. 16.
    I. Etxebarria, J. Ajuria, R. Palacios, Org. Electron. 19, 34 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Balaji, M.S. Esfahani, P. Joshi, J. Bhattacharaya, M. Jeffries-EL, V. Dalal, Eur. Polym. J. 49(12), 3921 (2013)CrossRefGoogle Scholar
  18. 18.
    F. Zhang, K.G. Jespersen, C. Björström, M. Svensson, M.R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, O. Inganäs, Adv. Funct. Mater. 16(5), 667 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Pal, W.C. Yen, J.S. Yang, W.F. Su, Macromolecules 40(23), 8189 (2007)CrossRefGoogle Scholar
  20. 20.
    A.S. Ferreira, J.C. Aguirre, S. Subramaniyan, S.A. Jenekhe, S.H. Tolbert, B.J. Schwartz, J. Phys. Chem. C 120(39), 22115 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Huang, E.J. Kramer, A.J. Heeger, G.C. Bazan, Chem. Rev. 114(14), 7006 (2014)CrossRefGoogle Scholar
  22. 22.
    U. Mehmood, A. Al-Ahmed, I.A. Hussein, Renew. Sust. Energ. Rev. 57, 550 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Kumar, R. Singh, S.P. Gopinathana, A. Kumar, Chem. Commun. 48, 4905 (2012)CrossRefGoogle Scholar
  24. 24.
    K. Tsuchiya, K. Ogino, Polym. J. 45, 281 (2013)CrossRefGoogle Scholar
  25. 25.
    F. Grenier, B.R. Aïch, Y.Y. Lai, M. Guérette, A.B. Holmes, Y. Tao, W.W.H. Wong, M. Leclerc, Chem. Mater. 27(6), 2137 (2015)CrossRefGoogle Scholar
  26. 26.
    L.A. Estrada, D.Y. Liu, D.H. Salazar, A.L. Dyer, J.R. Reynolds, Macromolecules 45(20), 8211 (2012)CrossRefGoogle Scholar
  27. 27.
    D. Romero-Borja, J.L. Maldonado, O. Barbosa-García, M. Rodríguez, A. de León, S. Fernández, E. Pérez-Gutiérrez, Carbon 134, 301 (2018)CrossRefGoogle Scholar
  28. 28.
    D. Barreiro-Argüelles, G. Ramos-Ortiz, J.L. Maldonado, E. Pérez-Gutiérrez, D. Romero-Borja, M.A. Meneses-Nava, J.C. Nolasco, Sol. Energy 163, 510 (2018)CrossRefGoogle Scholar
  29. 29.
    H.C. Liao, C.C. Ho, C.Y. Chang, M.H. Jao, S.B. Darling, W.-F. Su, Mater. Today 16(9), 326 (2013)CrossRefGoogle Scholar
  30. 30.
    G. Louarn, M. Trznadel, J.P. Buisson, J. Laska, A. Pron, M. Lapkowski, S. Lefrant, J. Phys. Chem. 100(30), 12532 (1996)CrossRefGoogle Scholar
  31. 31.
    M. Chávez-Castillo, A. Ledesma-Juárez, M. Güizado-Rodríguez, J. Castrellón-Uribe, G. Ramos-Ortíz, M. Rodríguez, J.L. Maldonado, J.A. Guerrero-Álvarez, V. Barba, Int. J. Polym. Sci. 2015, 1 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Adv. Mater. 24(5), 580 (2012)CrossRefGoogle Scholar
  33. 33.
    P. Chengac, X. Zhan, Chem. Soc. Rev. 45, 2544 (2016)CrossRefGoogle Scholar
  34. 34.
    R.M.A. de la Garza Rubí, M. Güizado-Rodríguez, D. Mayorga-Cruz, M.A. Basurto-Pensado, J.A. Guerrero-Álvarez, G. Ramos-Ortiz, M. Rodríguez, J.L. Maldonado, Opt. Mater. 46, 366 (2015)CrossRefGoogle Scholar
  35. 35.
    R.C. Hiorns, R. de Bettignies, J. Leroy, S. Bailly, M. Firon, C. Sentein, A. Khoukh, H. Preud’homme, C. Dagron-Lartigau, Adv. Funct. Mater. 16(17), 2263 (2006)CrossRefGoogle Scholar
  36. 36.
    W. Li, K.H. Hendriks, M.M. Wienk, R.A.J. Janssen, Acc. Chem. Res. 49, 78 (2016)CrossRefGoogle Scholar
  37. 37.
    G. Janssen, A. Aguirre, E. Goovaerts, P. Vanlaeke, J. Poortmans, J. Manca, Eur. Phys. J. Appl. Phys. 37(3), 287 (2007)CrossRefGoogle Scholar
  38. 38.
    P.J. Goutam, D.K. Singh, P.K. Iyer, J. Phys. Chem. C 116(14), 8196 (2012)CrossRefGoogle Scholar
  39. 39.
    J.W. Jung, J.W. Jo, E.H. Jung, W.H. Jo, Org. Electron. 31, 149 (2016)CrossRefGoogle Scholar
  40. 40.
    A.M. Schneider, L. Lu, E.F. Manley, T. Zheng, V. Sharapov, T. Xu, T.J. Marks, L.X. Chen, L. Yu, Chem. Sci. 6, 4860 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Lin, X. Chen, C. Jiang, M. Zhao, Y. Li, H. Wang, Org. Electron. 61, 197 (2018)CrossRefGoogle Scholar
  42. 42.
    D. Romero-Borja, J.L. Maldonado, O. Barbosa-García, M. Rodríguez, E. Pérez-Gutiérrez, R. Fuentes-Ramírez, G. de la Rosa, Synth. Met. 200, 91 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Arián Espinosa-Roa
    • 1
    • 5
  • María de Jesús Cruz-Carrillo
    • 2
  • Arelis Ledesma-Juárez
    • 2
  • Alejandra Montoya del Angel
    • 2
  • Daniel Romero-Borja
    • 1
  • Marisol Güizado-Rodríguez
    • 2
  • Mario Rodríguez
    • 1
  • Rosario Galindo
    • 3
  • José Luis Maldonado
    • 1
  • Victor Barba
    • 4
  1. 1.Research Group of Optical Properties of Materials (GPOM)Centro de Investigaciones en Óptica A.C.LeónMexico
  2. 2.Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp)-IICBAUniversidad Autónoma del Estado de Morelos (UAEM)CuernavacaMexico
  3. 3.Cátedra CONACYT DCNYE Universidad de GuanajuatoGuanajuatoMexico
  4. 4.Centro de Investigaciones Químicas (CIQ)-IICBAUniversidad Autónoma del Estado de Morelos (UAEM)CuernavacaMexico
  5. 5.CONACYT-Centro de Investigación en Química AplicadaUnidad MonterreyApodacaMexico

Personalised recommendations