Studies on growth and characterization of (E)-N′-[4-(dimethylamino) benzylidene]-4-hydroxybenzohydrazide hemihydrate: a nonlinear optical material

  • A. Subashini
  • Poornima Priyadharsani
  • K. Thamaraiselvi
  • V. Veeramani
  • Priya Rose
  • Reji Philip
  • Helen Stoeckli-Evans
  • K. Ramamurthi
  • R. Ramesh Babu


Hydrazone compound (E)-N′-[4-(dimethylamino) benzylidene]-4-hydroxybenzohydrazide hemihydrate (DMABHBH) was synthesized and single crystals of DMABHBH were grown by solvent evaporation method at room temperature. Molecular structure of DMABHBH compound was confirmed by 1H and 13C nuclear magnetic resonance techniques. The presence of functional groups was confirmed by Fourier transform infrared and FT Raman spectral analyses. The X-ray crystal structure was elucidated at 173 K by single crystal X-ray diffraction and the results were compared with the corresponding values obtained at 298 K. The compound crystallizes in the chiral monoclinic space group P21. Mechanical stability of the grown crystals was estimated from the Vicker’s microhardness test. Powder second harmonic generation efficiency of DMABHBH is about 1.1 times that of potassium dihydrogen phosphate. DMABHBH is found to show optical limiting behavior at high input light intensities, the third order nonlinear optical absorption coefficient measured using open aperture Z-scan studies, is 0.95 × 10−11 m/W. Anti-bacterial activity was studied using the well and disc diffusion methods.



One of the authors (AS) thanks the University Grant Commission, New Delhi for the award of a UGC: Meritorious Fellowship [File No. 4-1/2008 (BSR)]. The author (KR) thanks the Department of Physics and Nanotechnology for extending its facilities created under DST-FIST. Authors thank Central Instrumentation Facility, Pondicherry University, Pondicherry, Department of Visual Communication, Srimad Andavan Arts and Science and College and Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi for extending the instrumentation facilities.


  1. 1.
    Y.P. Kitaev, B.I. Buzykin, T.V. Troepolskaya, Russ. Chem. Rev. 39, 441–456 (1970)CrossRefGoogle Scholar
  2. 2.
    C. Serbutoviez, C. Bosshard, G. Knopfle, P. Wyss, P. Petre, P. Gunter, K. Schenk, E. Solari, G. Chapuis, Chem. Mater. 7, 1198–1206 (1995)CrossRefGoogle Scholar
  3. 3.
    Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, G.-C. Guo, Opt. Express 22, 23673–23678 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Ast, R.M. Nia, A. Schonbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, R. Schnabel, Opt. Lett. 36, 3467–3469 (2011)CrossRefGoogle Scholar
  5. 5.
    F. Steinlechner, N. Hermosa, V. Pruneri, J.P. Torres, Nat. Sci. Rep. 6, 21390 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Auger, W.J. Blau, P.M. Burnham, I. Chambrier, M.J. Cook, B. Isare, F. Nekelson, S.M.O. Flaherty, J. Mater. Chem. 13, 1042–1047 (2003)CrossRefGoogle Scholar
  7. 7.
    V.M. Naik, M.I. Sambrani, M.B. Mallur, Indian J. Chem. 47, 1793–1797 (2008)Google Scholar
  8. 8.
    K.K. Narang, V.P. Singh, Synth. React. Inorg. Met. Org. Chem. 27, 721–729 (1997)CrossRefGoogle Scholar
  9. 9.
    C. Loncle, J.M. Brunel, N. Vidal, M. Dherbomez, Y. Letourneux, Eur. J. Med. Chem. 39, 1067–1071 (2004)CrossRefGoogle Scholar
  10. 10.
    R. Todeschini, A.L.P. de Miranda, K.C.M. da Silva, S.C. Parrini, E.J. Barreiro, Eur. J. Med. Chem. 33, 189–199 (1998)CrossRefGoogle Scholar
  11. 11.
    S.G. Kucukguzel, A. Mazi, F. Sahin, S. Ozturk, J.P. Stables, Eur. J. Med. Chem. 38, 1005–1013 (2003)CrossRefGoogle Scholar
  12. 12.
    P. Melnyk, V. Leroux, C. Sergheraert, P. Grellier, C. Sergheraert, Bioorg. Med. Chem. Lett. 16, 31–35 (2006)CrossRefGoogle Scholar
  13. 13.
    P.C. Lima, L.M. Lima, K.C.M. da Silva, P.H.O. Le da, A.L.P. de Miranda, C.A.M. Fraga, E.J. Barreiro, Eur. J. Med. Chem. 35, 187–203 (2000)CrossRefGoogle Scholar
  14. 14.
    C. Cunha, J.M. Figueiredo, J.L.M. Tributino, A.L.P. Miranda, H.C. Castro, R.B. Zingali, C.A.M. Fraga, M.C.B.V. de Souza, V.F. Ferreira, E.J. Barreiro, Bioorg. Med. Chem. 11, 2051–2059 (2003)CrossRefGoogle Scholar
  15. 15.
    K.K. Bedia, O. Elc, U. Seda, K. Fatma, S. Nathaly, R. Sevim, A. Dimoglo, Eur. J. Med. Chem. 41, 1253–1261 (2006)CrossRefGoogle Scholar
  16. 16.
    N. Terzioglu, A. Gursoy, Eur. J. Med. Chem. 38, 781–786 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Katyal, G. Dutt, Talanta, 22 (1975) 151–166CrossRefGoogle Scholar
  18. 18.
    A. Galiano-Roth, D.B. Collum, J. Am. Chem. Soc. 110, 3546–3553 (1988)CrossRefGoogle Scholar
  19. 19.
    Z. Xia, L.W. Hu, X. Wang, Bioorg. Med. Chem. 17, 3374–3377 (2007)Google Scholar
  20. 20.
    R. Vijaya, B. Narayana, B. Ashalatha, B.K. Sarojani, Eur. J. Med. Chem. 42, 425–429 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Badi, H. Eissa, A.A. Husain, Chem. Pharm. Bull. 51, 833–847 (2003)Google Scholar
  22. 22.
    B.G. Bonde, N.J. Gaikwad, Biorg Med. Chem. 12, 2151–2161 (2004)CrossRefGoogle Scholar
  23. 23.
    C. Narayana, B.V. Ashalatha, S.N. Kumari, Eur. J. Med. Chem. 42, 425–429 (2007)CrossRefGoogle Scholar
  24. 24.
    S.V. Bhandari, A.A. Patil, A.P. Sarkate, S.G. Gore, K.G. Bothra, Bioorg. Med. Chem. 44, 390–400 (2009)CrossRefGoogle Scholar
  25. 25.
    Y.S. Ke, X. Quin, N. Wang, Q. Yang, Eur. J. Med. Chem. 43, 1–9 (2008)CrossRefGoogle Scholar
  26. 26.
    T.A. Vincent, Int. J. Antimicrob. Agents 16, 317–324 (2003)Google Scholar
  27. 27.
    D.-H. Shi, Acta Cryst E65, o2107 (2009)Google Scholar
  28. 28.
    X.-S. Lin, Y.-L. Sang, Acta Cryst E65, o1650 (2009)Google Scholar
  29. 29.
    Y.-M. Hao, Acta Cryst. E65, o2098 (2009)Google Scholar
  30. 30.
    X.-Y. Qiu, Acta Cryst. E65, o975 (2009)Google Scholar
  31. 31.
    H. Liu, Acta Cryst. E66, o1582 (2010)Google Scholar
  32. 32.
    X.-Y. Wang, G.-B. Cao, T. Yang, Acta Cryst. E64, o2022 (2008)Google Scholar
  33. 33.
    L.-W. Xue, Y.–J. Han, C.-J. Hao, G.-Q. Zhao, Q.-R. Liu, Acta Cryst. E64, o1938 (2008)Google Scholar
  34. 34.
    H.-W. Huang, Acta Cryst. E66, o3143 (2010)Google Scholar
  35. 35.
    H.-K. Fun, J. Horkaew, S. Chantrapromma, C. Karalai, Acta Cryst. E68, o1655 (2012)Google Scholar
  36. 36.
    J.-L. Hou, Acta Cryst. E68, o1352 (2012)Google Scholar
  37. 37.
    C.-M. Li, H.-Y. Ban, Acta Cryst. E65, o1465 (2009)Google Scholar
  38. 38.
    S.M. Saad, I. Fatima, S. Perveen, K.M. Khan, S. Yousuf, Acta Cryst. E68, o3499 (2012)Google Scholar
  39. 39.
    A. Subashini, K. Ramamurthi, H. Stoeckli-Evans, Acta Cryst. C68, o408–o412 (2012)Google Scholar
  40. 40.
    K. Naseema, K.V. Vijayalakshmi Rao, S., BalakrishnaKalluraya, Curr. Appl. Phys. 10, 1236–1241 (2010)CrossRefGoogle Scholar
  41. 41.
    K. Naseema, K.V. Sujith, K.B. Manjunatha, B. Kalluraya, G. Umesh, R. Vijayalakshmi, Opt. Laser Technol. 42, 741–748 (2010)CrossRefGoogle Scholar
  42. 42.
    S. Vijayakumar, M. Babu, B. Kalluraya, K. Chandrasekharan, Optik 123, 21–25 (2012)CrossRefGoogle Scholar
  43. 43.
    R.B. Moffett, N. Rabjohn, Organic Synthesis, (Wiley, New York, 1963)Google Scholar
  44. 44.
    R. O’Connor, Ibid. 26, 4375 (1961)Google Scholar
  45. 45.
    W.O. George, P.S. Mcintyre, Infrared Spectroscopy, Wiley, London, 1987Google Scholar
  46. 46.
    J. Coates, R.A. Meyers, Interpretation of Infrared Spectra: A Practical Approach (Wiley, Chichester, 2000)Google Scholar
  47. 47.
    S. Sapna, A. Kumar, P. Tandon, J. Mol. Struct. 981, 1–9 (2010)CrossRefGoogle Scholar
  48. 48.
    V. Krishnakumar, R. John Xavier, Spectrochim. Acta 61A, 253–258 (2005)CrossRefGoogle Scholar
  49. 49.
    A. Altun, K. Golcuk, M. Kumru, J. Mol. Struct. (THEOCHEM) 155, 637–639 (2003)Google Scholar
  50. 50.
    V. Krishnakumar, N. Prabavathi, Spectrochim. Acta 71A, 449–457 (2008)CrossRefGoogle Scholar
  51. 51.
    Y.-X. Sun, Q.,-L. Hao, Z.,-X. Yu, W.-J. Jiang, L.-D. Lu, X. Wang, Spectrochim. Acta 73A, 892–901 (2009)CrossRefGoogle Scholar
  52. 52.
    V. Krishnakumar, R. John Xavier, Indian J. Pure Appl. Phys. 41, 95–98 (2003)Google Scholar
  53. 53.
    D.N. Sathyanarayana, Vibrational Spectroscopy Theory and Applications, 2nd edn. (New Age International (P) Limited Publisher, New Delhi, 2004)Google Scholar
  54. 54.
    N.P. Singh, R.A. Yadav, Indian J. Phys. B 75(4), 347–355 (2001)Google Scholar
  55. 55.
    C. Stoe, X-Area & X-RED32 Software (Stoe & Cie GmbH, Darmstadt, 2009)Google Scholar
  56. 56.
    G.M. Sheldrick, Acta Cryst. A64, 112–122 (2008)CrossRefGoogle Scholar
  57. 57.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968)CrossRefGoogle Scholar
  58. 58.
    M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Styrland, IEEE J. Quantum Electron. 26, 760–769 (1990)CrossRefGoogle Scholar
  59. 59.
    A. Subashini, S. Leela, K. Ramamurthi, A. Allakcheeva, H. Stoeckli-Evans, V. Petricek, G. Chapuis, P. Pattison, R. Philip, CrystEngComm 15, 2474–2481 (2013)CrossRefGoogle Scholar
  60. 60.
    R.L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker Inc., New York, 1996)Google Scholar
  61. 61.
    A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Am. J. Clin. Pathol. 45, 493–496 (1966)CrossRefGoogle Scholar
  62. 62.
    N.G. Heatley, Biochem. J. 38, 61–65 (1944)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Subashini
    • 1
    • 2
  • Poornima Priyadharsani
    • 3
  • K. Thamaraiselvi
    • 3
  • V. Veeramani
    • 3
  • Priya Rose
    • 4
  • Reji Philip
    • 4
  • Helen Stoeckli-Evans
    • 5
  • K. Ramamurthi
    • 6
  • R. Ramesh Babu
    • 2
  1. 1.PG and Research Department of PhysicsSrimad Andavan Arts and Science CollegeTiruchirappalliIndia
  2. 2.Crystal Growth and Thin Film Laboratory, Department of PhysicsBharathidasan UniversityTiruchirappalliIndia
  3. 3.Department of Environmental BiotechnologyBharathidasan UniversityTiruchirappalliIndia
  4. 4.Light and Matter Physics GroupRaman Research InstituteBangaloreIndia
  5. 5.Institute of PhysicsUniversity of NeuchatelNeuchâtelSwitzerland
  6. 6.Department of Bio-medical EngineeringAarupadai Veedu Institute of Technology, Vinayaga Mission’s Research FoundationPaiyanoorIndia

Personalised recommendations