Advertisement

Sacrificial layer assisted front textured glass substrate with improved light management in thin film silicon solar cells

  • Sukanta Bose
  • Sourav MandalEmail author
  • A. K. Barua
  • Sumita Mukhopadhyay
Article
  • 18 Downloads

Abstract

The surface morphology of the front transparent conductive oxide (TCO) films plays a vital role in amorphous silicon thin film solar cells due to their high transparency, conductivity and excellent light scattering properties. Low haze value (5.98%) and surface r.m.s roughness (3.07 nm) are the major issues of aluminium doped zinc oxide (AZO) films to be used as the front TCO due to ineffective scattering of light. Wet chemical texturization of glass substrates using aluminium doped zinc oxide (AZO) as the sacrificial layer was developed in this work to counter those issues. 45% haze and 134 nm surface r.m.s roughness were achieved in AZO coated textured glass. The etched glass/AZO samples presented a much stronger light-scattering capability than the flat glass/AZO and they showed equivalent electrical properties with flat glass/AZO. Single junction amorphous silicon solar cells were fabricated on both flat and textured AZO coated glass substrate and an increment of short circuit current of ~ 12.96% was achieved due to scattering of light from the textured substrate into the cell.

Notes

Acknowledgements

This work has been supported by Ministry of New and Renewable Energy (MNRE), Govt. of India. The authors are grateful to Prof. H Saha Principal Investigator of the project for his encouragement and help. Authors would also like to thank Mr. D. Shome, (Technical Consultant) for his excellent support in experimental deposition of thin films.

References

  1. 1.
    M.I. Hossain, W. Qarony, M.K. Hossain, M.K. Debnath, M.J. Uddin, Y.H. Tsang, Appl. Nanosci. 7, 489 (2017)CrossRefGoogle Scholar
  2. 2.
    Y.A. Akimov, W.S. Koh, K. Ostrikov, Opt. Express 17, 10195 (2009)CrossRefGoogle Scholar
  3. 3.
    N. Alemu, F. Chen, Phys. Status Solidi Appl. Mater. Sci. 211, 213 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Tan, R. Santbergen, A.H.M. Smets, M. Zeman, Nano Lett. 12, 4070 (2012)CrossRefGoogle Scholar
  5. 5.
    X. Sheng, L.Z. Broderick, L.C. Kimerling, Opt. Commun. 314, 41 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Mandal, G. Das, S. Dhar, R.M. Tomy, S. Mukhopadhyay, C. Banerjee, A.K. Barua, J. Mater. Sci. Mater. Electron. 26, 331 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Mandal, G. Das, S. Dhar, R.M. Tomy, S. Mukhopadhyay, C. Banerjee, A.K. Barua, Mater. Chem. Phys. 157, 130 (2015)CrossRefGoogle Scholar
  8. 8.
    R.J. Mukti, A. Islam, in 18th Int. Conf. Comput. Inf. Technol. ICCIT 2015 (IEEE, 2015), pp. 577–581Google Scholar
  9. 9.
    U.W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, U. Rau, Appl. Phys. Lett. 99, 181105 (2011)CrossRefGoogle Scholar
  10. 10.
    M.L. Addonizio, L. Fusco, A. Antonaia, F. Cominale, I. Usatii, Appl. Surf. Sci. 357, 651 (2015)CrossRefGoogle Scholar
  11. 11.
    D. Xu, S. Yin, X. Zeng, S. Yang, X. Wen, Front. Optoelectron. 10, 31 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Faÿ, J. Steinhauser, S. Nicolay, C. Ballif, Thin Solid Films 518, 2961 (2010)CrossRefGoogle Scholar
  13. 13.
    W.Y. Kim, A. Shibata, Y. Kazama, M. Konagai, K. Takahashi, Jpn. J. Appl. Phys. 28, 311 (1989)CrossRefGoogle Scholar
  14. 14.
    S. Bose, A. Rayarfrancis, P.B. Bhargav, G. Ahmad, S. Mukhopadhyay, S. Mandal, A.K. Barua, J. Mater. Sci. Mater. Electron. 29, 3210 (2018)CrossRefGoogle Scholar
  15. 15.
    W. Böttler, V. Smirnov, J. Hüpkes, F. Finger, Phys. Status Solidi Appl. Mater. Sci. 209, 1144 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Niira, H. Senta, H. Hakuma, M. Komoda, H. Okui, K. Fukui, H. Arimune, K. Shirasawa, Sol. Energy Mater. Sol. Cells 74, 247 (2002)CrossRefGoogle Scholar
  17. 17.
    H.W. Deckman, J.H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982)CrossRefGoogle Scholar
  18. 18.
    L. Li, T. Abe, M. Esashi, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 21, 2545 (2003)CrossRefGoogle Scholar
  19. 19.
    H. Koshino, Z. Tang, S. Sato, H. Shimizu, Y. Fujii, T. Hanajiri, H. Shirai, EPJ Photovolt. 3, 35001 (2012)CrossRefGoogle Scholar
  20. 20.
    P. Fath, C. Marckmann, E. Bucher, G. Willeke, in 13th Eur. Photovolt. Sol. Energy Conf. (1995), pp. 29–32Google Scholar
  21. 21.
    P.L. Corcoran, K. Packer, M.C. Biesinger, J. Sediment. Res. 80, 884 (2010)CrossRefGoogle Scholar
  22. 22.
    X. Chen, J. Liu, J. Fang, Z. Chen, Y. Zhao, X. Zhang, J. Semicond. 37, 083003 (2016)CrossRefGoogle Scholar
  23. 23.
    E. Bunte, W. Zhang, J. Hüpkes, J. Vac. Sci. Technol. A Vac., Surf., Film. 28, 1255 (2010)CrossRefGoogle Scholar
  24. 24.
    P.A. Basore, M.A. Green, S.R. Wenham, J.J. Ji, Z. Shi, USA Patent 6538195 (2003)Google Scholar
  25. 25.
    S. Ronggui, G.C. Righini, J. Vac. Sci. Technol. A: Vacuum, Surfaces, Film. 9, 2709 (1991)Google Scholar
  26. 26.
    J.J. Ji, Z. Shi, USA Patent 6420647 (2002)Google Scholar
  27. 27.
    G. Tomandl, J. Non. Cryst. Solids 19, 105 (1975)CrossRefGoogle Scholar
  28. 28.
    P. Campbell, Glas. Technol. 43, 107 (2002)Google Scholar
  29. 29.
    P.I. Widenborg, A.G. Aberle, Adv. Optoelectron. 2007, 1 (2007)Google Scholar
  30. 30.
    N. Layadi, P. Roca, I. Cabarrocas, B. Drévillon, I. Solomon, Phys. Rev. B 52, 5136 (1995)CrossRefGoogle Scholar
  31. 31.
    J. Owen, Growth, Etching, and Stability of Sputtered ZnO: AI for Thin-Film Silicon Solar Cells (Forschungszentrum Jülich, Jülich, 2011)Google Scholar
  32. 32.
    G.A.C.M. Spierings, J. Mater. Sci. 28, 6261 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre of Excellence for Green Energy and Sensor SystemsIndian Institute of Engineering Science and TechnologyShibpur, HowrahIndia
  2. 2.Centre for Energy StudiesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations