Skip to main content
Log in

Ferroelectric properties of Ag doped PbZr0.53Ti0.47O3 thin film deposited by sol–gel process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To suppress the generation of oxygen vacancy during the PbZr0.53Ti0.47O3 (PZT) film synthesis process, herein, the 0–3 type Ag/PZT film is chosen as a prototype to systematically investigate the mechanisms of oxygen vacancy decrease and the relationship of ferroelectric properties. The uniform and dense films were successfully fabricated on fluorine tin oxide glasses (FTO) by facile sol–gel processes. It is confirmed the existence of silver nanoparticles in the film, indicating the composite ferroelectric films are of 0–3 type. When Ag doping mole concentration is 0.010 in the sol, a large remnant polarization (Pr) of ~ 50.7 µΧ/cm2 is got, which is 37.9 µΧ/cm2 for pure PZT. UV–vis spectrum confirms the generation of Ag2O in the process of mixing the sol. Furthermore, the oxygen vacancies caused by natural evaporation of lead specie are effectively reduced because of the decomposition of Ag2O, confirmed by X-ray photoelectron spectroscopy. This work points out the generated Ag2O as the intermediate product is the key to achieve high remnant polarization in Ag/PZT based film and make it as a promising candidate for memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.G. Wang, C.Z. Chen, J. Ma, T.H. Liu, Appl. Surf. Sci. 255, 1637–1645 (2008)

    Article  Google Scholar 

  2. A. Khan, Z. Abas, H.S. Kim, I.K. Oh, Smart. Mater. Struct. 25, 053002 (2016)

    Article  Google Scholar 

  3. W.C. Xu, Q. Li, Z.F. Yin, W.Q. Wang, S.C. Chu, H.L. Zou, Integr. Ferroelectr. 183, 100–109 (2017)

    Article  Google Scholar 

  4. U. Balachandran, D.K. Kwon, M. Narayanan, B. Ma, J. Eur. Ceram. Soc. 30, 365–368 (2010)

    Article  Google Scholar 

  5. E.F.C. Souza, A.Z. Simões, M. Cilense, E. Longo, J.A. Varela, Mater. Chem. Phys. 88, 155–159 (2004)

    Article  Google Scholar 

  6. Q. Zhang, R.W. Whatmore, J. Appl. Phys. 94, 5228 (2003)

    Article  Google Scholar 

  7. J.X. Wang, G.C. Jiang, W.C. Huang, D.Q. Liu, B. Yang, W.W. Cao, J. Alloy. Compd. 739, 700–704 (2018)

    Article  Google Scholar 

  8. S.L. Priya., V. Kumar., S. Nishio. I. Kanno, Integr. Ferroelectr. 176, 210–219 (2016)

    Article  Google Scholar 

  9. A.M. Deng, L.H. Luo, W.P. Li, F.F. Wang, Y.J. Wang, J. Eur. Ceram. Soc. 38, 1407–1415 (2018)

    Article  Google Scholar 

  10. J. Zhang, Z. Pan, F.F. Guo, W.C. Liu, H. Ning, Y.B. Chen, M.H. Lu, B. Yang, J. Chen, S.T. Zhang, X. Xing, J. Rodel, W. Cao, Y.F. Chen, Nat. Commun. 6, 6615 (2015)

    Article  Google Scholar 

  11. J.Q. Huang, Y.G. Cao, M.C. Hong, P.Y. Du, Appl. Phys. Lett. 92, 022911 (2008)

    Article  Google Scholar 

  12. M.P. Zheng, Y.D. Hou, M.K. Zhu, H. Yan, Scripta Mater. 145, 19–22 (2018)

    Article  Google Scholar 

  13. Y. Bai, Z.J. Wang, B. He, J.Z. Cui, Z.D. Zhang, ACS Omega 2, 9067–9073 (2017)

    Article  Google Scholar 

  14. T. Hu, Z.R. Wang, Y.B. Su, L.W. Tang, G. Shen, C.L. Song, G.R. Han, W.J. Weng, N. Ma, P.Y. Du, Thin Solid Films. 524, 121–126 (2012)

    Article  Google Scholar 

  15. T. Hu, W.J. Zhao, N. Ma, P.Y. Du, J. Mater. Sci. 26, 448–455 (2015)

    Google Scholar 

  16. T. Hu, Z.R. Wang, N. Ma, P.Y. Du, Thin Solid Films. 616, 252–259 (2016)

    Article  Google Scholar 

  17. T. Hu, Z.R. Wang, N. Ma, P.Y. Du, Appl. Phys. A 123, 770 (2017)

    Article  Google Scholar 

  18. D. Beena, K.J. Lethy, R. Vinodkumar, V.P. Mahadevan Pillai, V. Ganesan, D.M. Phase, S.K. Sudheer, Appl. Surf. Sci. 255, 8334–8342 (2009)

    Article  Google Scholar 

  19. Y.L. Tu, S.J. Milne, J. Mater. Res. 10, 3222–3231 (2011)

    Article  Google Scholar 

  20. W.X. Gao, L. You, Y.J. Wang, G.L. Yuan, Y.H. Chu, Z.D. Liu, J.M. Liu, Adv. Electron. Mater. 3, 1600542 (2017)

    Article  Google Scholar 

  21. L.E. Sanchez, S.Y. Wu, I.K. Naik, Appl. Phys. Lett. 56, 2399–2401 (1990)

    Article  Google Scholar 

  22. M. Nakamura, Y. Tokunaga, M. Kawasaki, Y. Tokura, Appl. Phys. Lett. 98, 082902 (2011)

    Article  Google Scholar 

  23. G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Appl. Phys. Lett. 92, 192905 (2008)

    Article  Google Scholar 

  24. S. Srinoi, R. Yimnirun, Y. Laosiritaworn, Ferroelectrics 470, 35–42 (2014)

    Article  Google Scholar 

  25. M.E. Ramos, P. Ferrari, D.D.E. Diaz, D. Lederman, J.T. Evans, J. Appl. Phys. 111, 014108 (2012)

    Article  Google Scholar 

  26. A. Tamilselvan, S. Balakumar, M. Sakar, C. Nayek, P. Murugavel, K. Saravana Kumar, Dalton Trans. 43, 5731–5738 (2014)

    Article  Google Scholar 

  27. S. Jaiswar, K.D. Mandal, J. Phys. Chem. C 121, 19586–19601 (2017)

    Article  Google Scholar 

  28. N. Wei, H.Z. Cui, Q. Song, L.Q. Zhang, X.J. Song, K. Wang, Y.F. Zhang, J. Li, J. Wen, J. Tian, Appl. Catal. B 198, 83–90 (2016)

    Article  Google Scholar 

  29. X.L. Yang, X.D. Su, M.R. Shen, F.G. Zheng, Y. Xin, L. Zhang, M.C. Hua, Y.J. Chen, V.G. Harris, Adv. Mater. 24, 1202–1208 (2012)

    Article  Google Scholar 

  30. Y. Wan, Z.R. Guo, X.L. Jiang, K. Fang, X. Lu, Y. Zhang, N. Gu, J. Colloid Interface Sci. 394, 263–268 (2013)

    Article  Google Scholar 

  31. Z.R. Wang, T. Hu, L.W. Tang, N. Ma, C.L. Song, G.L. Han, W.J. Weng, P.Y. Du, Appl. Phys. Lett. 93, 222901 (2008)

    Article  Google Scholar 

  32. R.L. Gao, H.W. Yang, Y.S. Chen, J.R. Sun, Y.G. Zhao, B.G. Shen, J. Alloy. Compd. 591, 346–350 (2014)

    Article  Google Scholar 

  33. W. Bai, X.J. Meng, T. Lin, L. Tian, C.B. Jing, W.J. Liu, J.H. Ma, J.L. Sun, J.H. Chu, J. Appl. Phys. 106, 124908 (2009)

    Article  Google Scholar 

  34. Y. Wang, W.J. Chen, X.Y. Zhang, W.J. Ma, B. Wang, Y. Zheng, Acta Mech. Sin. 30, 526–532 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51572056, 11404321, 11572103, 51602083 and 51502055), the Natural Science Foundation of Heilongjiang Province (Grant No. JC2017001, E2015001 and E2016042), Harbin Applied Technology Research and Development Project (Grant No. 2017RAXXJ003), and the National Key Basic Research Program of China (Grant No. 2013CB632900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guicheng Jiang or Bin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jiang, G., Huang, W. et al. Ferroelectric properties of Ag doped PbZr0.53Ti0.47O3 thin film deposited by sol–gel process. J Mater Sci: Mater Electron 30, 2592–2599 (2019). https://doi.org/10.1007/s10854-018-0534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0534-7

Navigation