Optimization of structural and optical properties of nanoporous silicon substrate for thin layer transfer application

  • Mansour AouassaEmail author
  • Latifa Hassayoun
  • Luc Favre
  • Antoine Ronda
  • Isabelle Berbezier


A study on optical and structural properties of nanoporous silicon is presented in this paper. The samples were prepared by electrochemical etching a heavily boron doped silicon wafer in a hydrofluoric acid electrolyte and flowed by in-situ sintering in ultra-high vacuum chemical vapor deposition reactor (UHVCVD) under hydrogen atmosphere at high temperature varied between 900 and 1100 °C. The structural and morphological properties were carried out using atomic force microscopy (AFM), scanning electronic microscopy (SEM) and high resolution transmission electronic microscopy (HRTEM). The optical properties were performed using the photoluminescence Spectroscopy (PL), Time Resolved Photoluminescence (TRPL), RAMAN spectroscopy and Fourier-transform infrared spectroscopy (FT-IR). It is shown that the in-situ heating at 900 °C desorbs the native oxide from the porous layer and closes the pores forming a continuous defects-free surface at the top of porous layer. The process allows obtaining stable porous layer with enhanced structural and optical properties and also tailoring the morphological properties and the visible optical emission. This paper aims at a comprehensive determination of the physical properties of sintered porous silicon, in particular, its structural and optical properties.


  1. 1.
    A. Uhlir Jr, Bell System Tech. J. 35, 333–347 (1956)CrossRefGoogle Scholar
  2. 2.
    A.G. Cullis, L.T. Canham, Nature 353, 335 (1991)CrossRefGoogle Scholar
  3. 3.
    N. Daldosso, A. Ghafarinazari, P. Cortelletti, L. Marongiu, M. Donini, V. Paterlini, P. Bettotti, R. Guider, E. Froner, S. Dusic, M. Scarpa, J. Mater. Chem. B, 2, 6345–6353 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Lukianov, K. Murakami, C. Takazawa, M. Ihara, Appl. Phys. Lett. 108, 213904 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Lukianov, M. Ihara, Thin Solid Films 648(28), 1–7 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Salonen, E. Mäkilä, J. Riikonen, T. Heikkilä, V.-P. Lehto, Phys. Status Solidi A 206(6), 1313–1317 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Martini, V. Depauw, M. Gonzalez, K. Vanstreels, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, Nanoscale Res. Lett. 7(1), 597 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Wolf, R. Brendel, Thin Solid Films 513(1–2), 385–390 (2006)CrossRefGoogle Scholar
  9. 9.
    R. Niepelt, J. Hensen, V. Steckenreiter, R. Brendel, S. Kajari-Schöder, Kerfless exfoliated thin crystalline Si wafers with Al metallization layers for solar cells. J. Mater. Res. 30, 3227–3240 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Gemmel, J. Hensen, S. Kajari-Schroder, R. Brendel, IEEE J. Photovolt. 7(2), 430–436 (2017)CrossRefGoogle Scholar
  11. 11.
    G. Müller, M. Nerding, N. Ott, H.P. Strunk, R. Brendel, Phys. Status Solidi (a) 197(1), 83–87 (2003)CrossRefGoogle Scholar
  12. 12.
    E. Widiatmoko, M. Abdullah, Khairurrijal, AIP Conf. Proc. 1284, 23 (2010)CrossRefGoogle Scholar
  13. 13.
    T. Doktor, D. Kytyr, J. Valach, O. Jirousek, Youth Symposium on Experimental Solid Mechanics (YSESM) Trieste, Italy, July 7–9 (2010)Google Scholar
  14. 14.
    P. Elia, E. Nativ-Roth, Y. Zeiri, Z. Porat, Microporous Mesoporous Mater. 225, 465–471 (2016)CrossRefGoogle Scholar
  15. 15.
    X. Wu, A. Bek, A.M. Bittner, Ch Eggs, Ch Ossadnik, S. Veprek, Thin Solid Films 425, 175–184 (2003)CrossRefGoogle Scholar
  16. 16.
    Hideki, Koyama, Yuka Matsushita, and Nobuyoshi Koshida. J. Appl. Phys. 83, 1776 (1998)CrossRefGoogle Scholar
  17. 17.
    G. Aggarwal, P. Mishra, B. Joshi, H.S.S. Islam, J. Porous Mater. 21(1), 23–29 (2014)CrossRefGoogle Scholar
  18. 18.
    I. Iatsunskyi, G. Nowaczyk, S. Jurga, V. Fedorenko, M. Pavlenko, V. Smyntyna, Optik, 126(18), 1650–1655 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Zhang, Z. Lu, J. Sheng, P. Gao, X. Yang, S. Wu, J. Ye, M. Kambara, The Japan Society of Applied Physics, Appl. Phys. Express, 9(5), 055506 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Sugiyama, O. Nittono, Jpn. J. Appl. Phys. Part 2, 28(11) L2013 (1989)CrossRefGoogle Scholar
  21. 21.
    A.R. Chelyadinskyb, A.M. Dorofeeva, N.M. Kazuchitsa, S. La Monicac, S.K. Lazarouka, G. Maielloc, G. Masinid, N.M. Peninab, V.F. Stelmakhb, V.P. Bondarenkoa, A. Ferraric, J. Electrochem. Soc. 144(4), 1463–1468 (1997)CrossRefGoogle Scholar
  22. 22.
    S. Zhang, Z. Lu, J. Sheng, P. Gao, X. Yang, S. Wu, J. Ye, M. Kambara, Appl. Phys. Express 9, 055506 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Aouassa, I. Jadli, L.S. Hassayoun, H. Maaref, G. Panczer, L. Favre, A. Ronda, I. Berbezier, Superlattices Microstruct. 112, 493–498 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mansour Aouassa
    • 1
    Email author
  • Latifa Hassayoun
    • 2
  • Luc Favre
    • 3
  • Antoine Ronda
    • 3
  • Isabelle Berbezier
    • 3
  1. 1.Department of Physics, College of Arts and SciencesJouf UniversityAl QurayyatKingdom of Saudi Arabia
  2. 2.Laboratory of Micro-Opto-electronic and Nanostructures (LMON), Department of PhysicsFaculty of SciencesMonastirTunisia
  3. 3.IM2NP–CNRS–AMUMarseilleFrance

Personalised recommendations