Advertisement

Structural, optical, and dielectric studies of LaFe1−xMoxO3 (x = 0.0, 0.5) perovskite materials

  • D. TriyonoEmail author
  • H. Laysandra
  • H. L. LiuEmail author
Article
  • 58 Downloads

Abstract

The structural, optical, and dielectric properties of LaFe1−xMoxO3 (x = 0.0, 0.5) synthesized by the sol–gel method were investigated by X-ray diffraction (XRD), Raman scattering, and impedance spectroscopy. XRD analysis revealed that the x = 0.5 compound is single-phase and orthorhombic, with space group Pbnm, similar to the parent x = 0.0 compound but with larger lattice parameters and/or a larger unit-cell volume. The Raman scattering spectra revealed local lattice distortions in the x = 0.5 compound and spin–phonon coupling related to the magnetic transition (Néel) temperature. The impedance data were well fitted with an R(R1-CPE1)//(R2-CPE2) equivalent electrical circuit, demonstrating the contributions of both grains and grain boundaries. The temperature (300–500 K) and frequency (100 Hz–1 MHz) dependences of the dielectric properties showed that Mo substitution adversely affected the dielectric parameters.

Notes

Acknowledgements

H.L.L. thanks financial support from the Ministry of Science and Technology of Republic of China under Grants No. MOST 105-2112-M-003-013-MY3. D Triyono thanks financial support from the Ministry of Technology Research and Higher Education of Republic of Indonesia under Grants No. 537/UN2.R3.1/HKP05.00/2018, 2nd year.

References

  1. 1.
    B.C. Sutar, R.N.P. Choudhary, P.R. Das, Ceram. Int. 40, 7791–7798 (2014)CrossRefGoogle Scholar
  2. 2.
    C. Xueying, L. Shengli, Z. Xinde, Mater. Lett. 130, 267–270 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Phokha, S. Hunpratup, S. Pinitsoontorn, B. Putasaeng, S. Rujirawat, S. Maensiri, Mater. Res. Bull. 67, 118–125 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Köferstein, L. Jäger, S.G. Ebbinghaus, Solid State Ion. 249–250, 1–5 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Mater. Lett. 64, 415–418 (2010)CrossRefGoogle Scholar
  6. 6.
    Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, J. Alloys Compd. 583, 21–31 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Zhang, P. Song, D. Han, Q. Wang, Physica E 63, 21–26 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Ceram. Int. 40, 14367–14373 (2014)CrossRefGoogle Scholar
  9. 9.
    K.K. Bhargav, S. Ram, S.B. Majumder, J. Alloys Compd. 638, 334–343 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Murtaza, I.A. Salmani, J. Ali, M.S. Khan, J. Supercond. Novel Magn. (2018).  https://doi.org/10.1007/s10948-017-4443-4 CrossRefGoogle Scholar
  11. 11.
    C. Doroftei, P.D. Popa, F. Iacomi, L. Leontie, Sens. Actuators B 191, 239–245 (2014)CrossRefGoogle Scholar
  12. 12.
    A.S. Mahapatra, A. Mitra, A. Mallick, M. Ghosh, P.K. Chakrabarti, Mater. Lett. 169, 160–163 (2016)CrossRefGoogle Scholar
  13. 13.
    M.L. Sanjuan, V.M. Orera, R.I. Rerino, J. Blasco, J. Phys.: Condens. Matter 10, 11687–11702 (1998)Google Scholar
  14. 14.
    L.M. Carron, A. de Andres, M.J.M. Lope, M.T. Casais, J.A. Alonso, J. Alloys Compd. 323–324, 494–497 (2001)CrossRefGoogle Scholar
  15. 15.
    T. Runka, M. Berkowski, J. Mater. Sci. 47, 5393–5401 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Andreasson, J. Holmlund, R. Rauer, M. Kall, L. Borjesson, C.S. Knee, A.K. Eriksson, S.G. Eriksson, M. Rubhausen, R.P. Chaudhury, Phys. Rev. B 78, 235103–235113 (2008)CrossRefGoogle Scholar
  17. 17.
    L.M. Carron, A. de Andres, M.J.M. Lope, M.T. Casais, J.A. Alonso, Phys. Rev. B 66, 174303 (2002)CrossRefGoogle Scholar
  18. 18.
    R.J.D. Tilley, Perovskite: Structure-Property Relationships (Wiley, New York, 2016)Google Scholar
  19. 19.
    R.P. Liferovich, R.H. Mitchell, J. Solid State Chem. 177, 2188–2197 (2004)CrossRefGoogle Scholar
  20. 20.
    P.V. Coutinho, F. Cunha, P. Barrozo, Solid State Commun. 252, 59–63 (2017)CrossRefGoogle Scholar
  21. 21.
    R. Rawat, D.M. Phase, R.J. Choudhary, J. Magn. Magn. Mater. 441, 398–403 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Panchwanee, V.R. Reddy, A. Gupta, V.G. Sathe Mater. Chem. Phys. 196, 205–212 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Wei, R. Haumont, R. Jarrier, P. Berthet, B. Dkhil, J. Appl. Phys. 111, 114106 (2012)CrossRefGoogle Scholar
  24. 24.
    F.A. Mir, Int. J. Thermophys. 36, 1654–1660 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Das, A. Inukai, N. Debnath, T. Kawaguchi, N. Sakamoto, S.M. Hoque, H. Aono, K. Shinozaki, H. Suzuki, N. Wakiya, J. Phys. Chem. Solids 112, 179–184 (2018)CrossRefGoogle Scholar
  26. 26.
    R. Tlili, M. Bejar, E. Dhahri, A. Zaoui, E.K. Hlil, L. Bessais, Polyhedron 121, 19–24 (2017)CrossRefGoogle Scholar
  27. 27.
    P. Dhak, D. Dhak, M. Das, Pramanik, P, J. Mater. Sci. Mater. Electron. 22, 1750–1760 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, J. Alloys Compd. 653, 506–512 (2015)CrossRefGoogle Scholar
  29. 29.
    K. Devi Chandrasekhar, S. Mallesh, J. Krishna Murthy, A.K. Das, A. Venimadhav, Physica B 448, 304–311 (2014)CrossRefGoogle Scholar
  30. 30.
    Q. Ke, X. Lou, Y. Wang, J. Wang, Phys. Rev. B 82, 024102 (2010)CrossRefGoogle Scholar
  31. 31.
    H.M. El-Mallah, Acta Phys. Pol. A 122, 174–179 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, FMIPAUniversitas IndonesiaDepokIndonesia
  2. 2.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations