Advertisement

Dosimetric, optical and radio-luminescence properties of Ce-doped 90KPO3-10Al2O3 glasses

  • Daiki ShiratoriEmail author
  • Yuya Isokawa
  • Hayata Samizo
  • Go Okada
  • Noriaki Kawaguchi
  • Takayuki Yanagida
Article
  • 46 Downloads

Abstract

In this study, we evaluated the dosimetric and Radio-luminescence (RL) properties of Ce-doped 90KPO3-10Al2O3 glasses. The glass samples doped with different concentrations of Ce (0.05, 0.1, 0.5 and 1.0 mol%) were synthesized by the melt quenching method. The Ce-doped samples had high transmittance (80–90%) at wavelengths longer than 350 nm. From the measurements of photoluminescence (PL) decay curve, the luminescence decay time was confirmed to be typical for the 5d-4f transition of Ce3+ (30 ns). A similar decay time as that of PL was also confirmed in RL; therefore, the dominant emission origin of RL was ascribed to Ce3+. In addition, the samples showed thermally-stimulated luminescence, and the sensitivity of integrated signal over the glow curve was confirmed to range from 0.01 mGy to 1 Gy for the 0.5% Ce-doped sample which showed the highest sensitivity among the present materials.

Notes

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (A) (17H01375) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government (MEXT) as well as A-STEP from Japan Science and Technology Agency (JST). The Cooperative Research Project of Research Institute of Electronics, Shizuoka University, Terumo Foundation for Life Sciences and Arts, Izumi Science and Technology Foundation, SEI Group CSR Foundation, and The Iwatani Naoji Foundation are also acknowledged.

References

  1. 1.
    E.G. Yukihara, S.W.S. McKeever, Optically Stimulated Luminescence (John Wiley & Sons, Ltd, Chichester, 2011)CrossRefGoogle Scholar
  2. 2.
    H.C. Biggin, Phys. Bull. 37, 267 (1986)CrossRefGoogle Scholar
  3. 3.
    L. Benevides, A. Romanyukha, F. Hull, M. Duffy, S. Voss, M. Moscovitch, Radiat. Meas. 45, 523 (2010)CrossRefGoogle Scholar
  4. 4.
    C.C. Gronchi, S.G.P. Cecatti, T.C.N.O. Pinto, L.V.E. Caldas, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 2915 (2008)CrossRefGoogle Scholar
  5. 5.
    M.S. Akselrod, V.S. Kortov, D.J. Kravetsky, V.I. Gotlib, Radiat. Prot. Dosim. 32, 15 (1990)Google Scholar
  6. 6.
    B. Tiwari, N.S. Rawat, D.G. Desai, S.G. Singh, M. Tyagi, P. Ratna, S.C. Gadkari, M.S. Kulkarni, J. Lumin. 130, 2076 (2010)CrossRefGoogle Scholar
  7. 7.
    M.D. Morgan, T.G. Stoebe, Radiat. Prot. Dosim. 17, 455 (1986)CrossRefGoogle Scholar
  8. 8.
    V.E. Kafadar, K.F. Majeed, Thermochim. Acta 590, 266 (2014)CrossRefGoogle Scholar
  9. 9.
    A.J.J. Bos, J.B. Dielhof, Radiat. Prot. Dosim. 37, 231 (1991)Google Scholar
  10. 10.
    A. Jahn, M. Sommer, W. Ullrich, M. Wickert, J. Henniger, Radiat. Meas. 56, 324 (2013)CrossRefGoogle Scholar
  11. 11.
    H. Tanaka, Y. Fujimoto, M. Koshimizu, T. Yanagida, T. Yahaba, K. Saeki, K. Asai, Radiat. Meas. 94, 73 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Kato, K. Chida, T. Moritake, Y. Koguchi, T. Sato, H. Oosaka, T. Tosa, K. Kadowaki, Radiat. Prot. Dosim. 162, 224 (2014)CrossRefGoogle Scholar
  13. 13.
    N. Soga, K. Tanaka, R. Ota, J. Soc. Mater. Sci. Jpn. 35, 133 (1986)CrossRefGoogle Scholar
  14. 14.
    H. Takebe, A. Saitoh, Bull. Ceram. Soc. Jpn. 48, 927 (2013)Google Scholar
  15. 15.
    Z. Teixeira, O.L. Alves, I.O. Mazali, J. Am. Ceram. Soc. 90, 256 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Fukui, S. Sakida, Y. Benino, T. Nanba, J. Ceram. Soc. Jpn. 120, 530 (2012)CrossRefGoogle Scholar
  17. 17.
    L.M. Sharaf El-Deen, M.S. Al, Salhi, M.M. Elkholy, J. Non-cryst. Solids 354, 3762 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. Miyamoto, H. Nanto, T. Kurobori, Y. Fujimoto, T. Yanagida, J. Ueda, S. Tanabe, T. Yamamoto, Radiat. Meas. 71, 529 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Takayuki, 94, 75 (2018)Google Scholar
  20. 20.
    T. Yanagida, Y. Fujimoto, N. Kawaguchi, S. Yanagida, J. Ceram. Soc. Jpn. 121, 988 (2013)CrossRefGoogle Scholar
  21. 21.
    T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Opt. Mater. (Amst). 35, 2480 (2013)CrossRefGoogle Scholar
  22. 22.
    T. Yanagida, Y. Fujimoto, T. Ito, K. Uchiyama, K. Mori, Appl. Phys. Express 7, 4 (2014)CrossRefGoogle Scholar
  23. 23.
    L.H. Zheng, X.Y. Sun, R.H. Mao, H.H. Chen, Z.J. Zhang, J.T. Zhao, J. Non-cryst. Solids 403, 1 (2014)CrossRefGoogle Scholar
  24. 24.
    N. S. and S.S. Megumi TASHIRO, Ournal Ceram. Assoc. Jpn 68, (1960)Google Scholar
  25. 25.
    H. Dunken, R.H. Doremus, J. Non-cryst. Solids 92, 61 (1987)CrossRefGoogle Scholar
  26. 26.
    Y. Isokawa, S. Hirano, N. Kawano, G. Okada, N. Kawaguchi, T. Yanagida, J. Non-cryst. Solids 487, 1 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Fujimoto, T. Yanagida, Y. Futami, H. Masai, Jpn. J. Appl. Phys. 53, 05FK05 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Chen, D. Luo, L. Luo, X. Wang, T. Tang, W. Luo, J. Non-cryst. Solids 386, 124 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Daiki Shiratori
    • 1
    Email author
  • Yuya Isokawa
    • 1
  • Hayata Samizo
    • 1
  • Go Okada
    • 2
  • Noriaki Kawaguchi
    • 1
  • Takayuki Yanagida
    • 1
  1. 1.Nara Institute of Science and TechnologyIkomaJapan
  2. 2.Kanazawa Institute of TechnologyNonoichiJapan

Personalised recommendations