Advertisement

Electrodeposited nickel aluminum-layered double hydroxide on Co3O4 as binder-free electrode for supercapacitor

  • Xin Chen
  • Heng Yuzhi
  • Li Hui
  • Sungchul Bae
  • Li Ang
  • Zhen Wang
  • Kwan San Hui
  • Kwun Nam Hui
  • Erfan Zal Nezhad
Article
  • 44 Downloads

Abstract

Here, we report a heterostructured core–shell electrode consists of cobalt oxide (Co3O4) nanowire core and nickel aluminum (NiAl)-layered double hydroxide (NiAl-LDH; herein Co3O4@LDH) nanosheet shell grown on nickel foam as advanced electrode for supercapacitor. Benefiting from the core–shell configuration and smart hybridization, the optimized Co3O4@LDH core–shell electrode exhibits a high capacitance of 2011 F g−1 at 2 A g−1 and remains 1455 F g−1 at 40 A g−1, which outperforms the electrochemical performance of individual component of Co3O4 (720 F g−1 at 2 A g−1). A hybrid supercapacitor using Co3O4@LDH as positive electrode and carbon nanotube as negative electrode delivers an energy density of 18.1 Wh kg−1 at a power density of 375 kW kg−1 at a current density of 0.5 A g−1. Smart hybridization of core–shell electrode shows great promise as advanced electrode materials for supercapacitor with high electrochemical performance.

Notes

Acknowledgements

We acknowledge Hanyang University’s financial support through the Young Faculty Forum Fund (Number 201600000001555). This work was supported by the Science and Technology Development Fund of the Macau SAR (FDCT098/2015/A3 and FDCT191/2017/A3), the Multi-Year Research Grants (MYRG2017-00216-FST and MYRG2018-00192-IAPME) from the Research Services and Knowledge Transfer Office at the University of Macau, and the UEA funding.

References

  1. 1.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326–1330 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Cao, G.T. Li, X.B. Li, Chem. Eng. J. 292, 207–223 (2016)CrossRefGoogle Scholar
  3. 3.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  4. 4.
    R. Warren, F. Sammoura, F. Tounsi, M. Sanghadasa, L. Lin, J. Mater. Chem. A 3, 15568–15575 (2015)CrossRefGoogle Scholar
  5. 5.
    M.Y. Yao, X. Zhao, L. Jin, F.Y. Zhao, J.X. Zhang, J. Dong, Q.H. Zhang, Chem. Eng. J. 322, 582–589 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Wang, B. Ding, Y.L. Xu, L.F. Shen, H. Dou, X.G. Zhang, ACS Appl. Mater. Interface 7, 22284–22291 (2015)CrossRefGoogle Scholar
  7. 7.
    C.X. Liu, G.Y. Han, Y.Z. Chang, Y.M. Xiao, H.H. Zhou, G.Q. Shi, Chem. Eng. J. 328, 25–34 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Zhang, X. Zhang, L. Shen, B. Gao, L. Hao, X. Lu, F. Zhang, B. Ding, C. Yuan, J. Power Sources 199, 395–401 (2012)CrossRefGoogle Scholar
  9. 9.
    X. Bai, Q. Liu, J.Y. Liu, Z. Gao, H.S. Zhang, R.R. Chen, Z.S. Li, R.M. Li, P.L. Liu, J. Wang, Chem. Eng. J. 328, 873–883 (2017)CrossRefGoogle Scholar
  10. 10.
    L. Li, K.S. Hui, K.N. Hui, Y.R. Cho, J. Mater. Chem. A 5, 19687–19696 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Zhang, R. Chen, K.N. Hui, K.S. Hui, H. Lee, Chem. Eng. J. 325, 554–563 (2017)CrossRefGoogle Scholar
  12. 12.
    L.J. Zhang, J. Wang, J.J. Zhu, X.G. Zhang, K.S. Hui, K.N. Hui, J. Mater. Chem. A 1, 9046–9053 (2013)CrossRefGoogle Scholar
  13. 13.
    Q.Q. Hu, Z.X. Gu, X.T. Zheng, X.J. Zhang, Chem. Eng. J. 304, 223–231 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Liu, N. Fu, G. Zhang, M. Xu, W. Lu, L. Zhou, H. Huang, Adv. Funct. Mater. 27, 1605307 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Li, Y. Chang, J. Yang, Z. Changtai, M. Zhang, H. Huang, L. Zhibin, W. Guo, J. Qiu, Energy Environ. Sci 10, 1958–1965 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Jiang, Y. Sui, J. Qi, Y. Chang, Y. He, Q. Meng, F. Wei, Z. Sun, Y. Jin, Appl. Surf. Sci. (2017)Google Scholar
  17. 17.
    Y.W. Cheng, H.B. Zhang, C.V. Varanasi, J. Liu, Energy Environ. Sci. 6, 3314–3321 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Wang, X. Zhang, Q. Wei, H. Lv, Y. Tian, Z. Tong, X. Liu, J. Hao, H. Qu, J. Zhao, Y. Li, L. Mai, Nano Energy 19, 222–233 (2016)CrossRefGoogle Scholar
  19. 19.
    B.K. Guan, D. Guo, L.L. Hu, G.H. Zhang, T. Fu, W.J. Ren, J.D. Li, Q.H. Li, J. Mater. Chem. A 2, 16116–16123 (2014)CrossRefGoogle Scholar
  20. 20.
    Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, ACS Nano 4, 3187–3194 (2010)CrossRefGoogle Scholar
  21. 21.
    X. Xia, J. Tu, Y. Zhang, Y. Mai, X. Wang, C. Gu, X. Zhao, J. Phys. Chem. C 115, 22662–22668 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Zhang, K.N. Hui, K.S. Hui, X. Chen, R. Chen, H. Lee, Int. J. Hydrog. Energy 41, 9443–9453 (2016)CrossRefGoogle Scholar
  23. 23.
    S.B. Kulkarni, A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, S.S. Joshi, C.D. Lokhande, Int. J. Hydrog. Energy 38, 4046–4053 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Li, L. Zhang, X. Xiang, D.P. Yan, F. Li, J. Mater. Chem. A 2, 13250–13258 (2014)CrossRefGoogle Scholar
  25. 25.
    S.K. Meher, G.R. Rao, J. Phys. Chem. C 115, 15646–15654 (2011)CrossRefGoogle Scholar
  26. 26.
    F. Ning, M. Shao, C. Zhang, S. Xu, M. Wei, X. Duan, Nano Energy 7, 134–142 (2014)CrossRefGoogle Scholar
  27. 27.
    X. Li, Z. Yang, W. Qi, Y. Li, Y. Wu, S. Zhou, S. Huang, J. Wei, H. Li, P. Yao, Appl. Surf. Sci. 363, 381–388 (2016)CrossRefGoogle Scholar
  28. 28.
    L. Zhang, K.N. Hui, K. San Hui, H. Lee, J. Power Sources 318, 76–85 (2016)CrossRefGoogle Scholar
  29. 29.
    C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang, H.J. Fan, Energy Environ. Sci. 4, 4496–4499 (2011)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, S. Dong, X. Wu, M. Li, J. Electrochem. Soc. 164, H56–H62 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Huang, Y. Zhang, F. Li, L. Zhang, Z. Wen, Q. Liu, J. Power Sources 252, 98–106 (2014)CrossRefGoogle Scholar
  32. 32.
    X. Wang, X. Li, X. Du, X. Ma, X. Hao, C. Xue, H. Zhu, S. Li, Electroanalysis 29, 1286–1293 (2017)CrossRefGoogle Scholar
  33. 33.
    H. Wang, C.M. Holt, Z. Li, X. Tan, B.S. Amirkhiz, Z. Xu, B.C. Olsen, T. Stephenson, D. Mitlin, Nano Res. 5, 605–617 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Convergence EngineeringHanyang UniversitySeoulSouth Korea
  2. 2.Department of Chemical EngineeringHanyang UniversitySeoulSouth Korea
  3. 3.Engineering, Faculty of ScienceUniversity of East AngliaNorwichUK
  4. 4.Institute of Applied Physics and Materials EngineeringUniversity of MacauTaipaChina
  5. 5.Division of Architectural EngineeringHanyang UniversitySeoulRepublic of Korea
  6. 6.Materials and Structural Analysis DivisionThermo Fisher Scientific, International BioislandGuangzhouChina

Personalised recommendations