Advertisement

CBRAM devices based on a nanotube chalcogenide glass structure

  • M. R. Latif
  • P. H. Davis
  • W. B. Knowton
  • M. Mitkova
Article
  • 21 Downloads

Abstract

CBRAM nano-ionic devices are emerging as a competitive technology solution for transistor free memory, offering low power consumption, fast switching, and non-volatility. However, due to the process by which switching is achieved in these devices, namely stochastic growth of a conductive filament bridging the two electrodes within the amorphous material between the electrodes, they suffer from reliability problems. In this work we present devices built with a nanotube structure of chalcogenide glasses to confine the growing conductive bridge. This structure is found to greatly improve device reliability and switching speed. Furthermore, the technology does not involve additional steps, is cost-effective, and is fully compatible with conventional CMOS technology. We have verified the process of conductive bridge growth with scanning electron microscopy and atom force microscopy and characterized the devices in terms of their current–voltage characteristics, memory window, endurance, and retention, all of which show excellent parameters. Their performance stability is also demonstrated at 130 °C, while multilevel switching is established by application of a variety of compliance currents.

Notes

Acknowledgements

This work was partially supported by funding through Idaho State Board of Education under Grant No. IF14-004. Authors acknowledge the participation in this work of Jason Nielsen, who conducted the AFM measurements.

References

  1. 1.
    G.E. Moore, IEEE Trans. Solid State Circ. News. 11, 33 (2006)CrossRefGoogle Scholar
  2. 2.
    M.T. Bohr, IEEE Trans. Nanotechnol. 1, 56 (2002)CrossRefGoogle Scholar
  3. 3.
    J. Alsmeier, G. Samachisa, US Patent 8,349,681, (2013)Google Scholar
  4. 4.
    Y.S. Kim, D.J. Lee, C.K. Lee, H.K. Choi, S.S. Kim, J.H. Song et al., 2010 IEEE International in Reliability Physics Symposium (IRPS), 599 (2010)Google Scholar
  5. 5.
    S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)CrossRefGoogle Scholar
  6. 6.
    M.J. Kang, T.J. Park, Y.W. Kwon, D.H. Ahn, Y.S. Kang, H. Jeong et al., IEEE Electron. Devices Meeting Tech. Digest 39, 11 (2011)Google Scholar
  7. 7.
    L. Bo, Data storage at the nanoscale, in Advances and Applications, ed. by G. Fuxi, W. Yang (CRC Press, Taylor and Francis publishing group, 2015), p. 463Google Scholar
  8. 8.
    K.M. Kim et al., Sci. Rep. 6, 20085 (2016)CrossRefGoogle Scholar
  9. 9.
    M.N. Kozicki, H.J. Barnaby, Semicond. Sci. Technol. 31, 113001 (2016)CrossRefGoogle Scholar
  10. 10.
    M.N. Kozicki, M. Mitkova, I. Valov, in Electrochemical Metallization Memories, ed. D. Ielmini, R. Waser (Wiley-VCH Verlag GmbH & Co. KGaA, 2016), p. 483Google Scholar
  11. 11.
    I. Valov, M.N. Kozicki, J. Phys. D Appl. Phys. 46, 074005 (2013)CrossRefGoogle Scholar
  12. 12.
    U. Russo, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, IEEE Trans. Electron Devices 56(5), 1040 (2009)CrossRefGoogle Scholar
  13. 13.
    H.Y. Cheng, M. BrightSky, S. Raoux, C.F. Chen, P.Y. Du, J.Y. Wu, Y.Y. Lin, T.H. Hsu, Y. Zhu, S. Kim, H.L. Lung, C. Lam, IEEE International Electron Devices Meeting (Washington, DC, 2013), pp. 30–36Google Scholar
  14. 14.
    A. Bunde, J.W. Kantelhar, in Diffusion in Condensed Matter (Springer, Berlin, 2005), 895Google Scholar
  15. 15.
    S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen. H. Yeon, S. Yu, J. Kim, Nat. Mat. 17, 335 (2018)CrossRefGoogle Scholar
  16. 16.
    D.B. Strukov, Nat. Mat. 17, 293 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu, J. Kim, Suppl. Inf. Nat. Mater. 17, 335, (2018).  https://doi.org/10.1038/s41563-017-0001-5https1038/s41563-017-0001-5 CrossRefGoogle Scholar
  18. 18.
    M.R. Latif, D. Tenne, M. Mitkova, J. Mater. Sci.: Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-0521-z
  19. 19.
    C.A. Spence, S.R. Elliott, Phys. Rev. B 39, 5452 (1989)CrossRefGoogle Scholar
  20. 20.
    E. Marquez, A.M. Bernal-Oliva, J.M. Gonzalez-Leal, R. Prieto, Alcón, R. Jiménez-Garay, J. Non-Cryst. Sol. 222, 250 (1997)CrossRefGoogle Scholar
  21. 21.
    C. Li, S. Minne, B. Pittenger, A. Mednick, M. Guide, T. Nguyen, Bruker application note AN132 Rev. A, (2011)Google Scholar
  22. 22.
    H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng et al., in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 1 (2008)Google Scholar
  23. 23.
    Y.S. Chen, T.Y. Wu, P.J. Tzeng, P.S. Chen, H.Y. Lee, C.H. Lin et al. in VLSI Technology, Systems, and Applications, 2009. International Symposium on VLSI-TSA’09, 37, (2009)Google Scholar
  24. 24.
    M.N. Kozicki, M. Park, M. Mitkova, IEEE Trans. Nanotechnol. 4, 331 (2005)CrossRefGoogle Scholar
  25. 25.
    C. Cheng, A. Chin, F. Yeh, 2010 Symposium on VLSI Technology (VLSIT), 85 (2010)Google Scholar
  26. 26.
    J.B. Allen, R.F. Larry, Electrochemical methods: fundamentals and applications. Department of Chemistry and Biochemistry University of Texas at Austin, John Wiley & Sons, Inc, (2001)Google Scholar
  27. 27.
    C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry (Wiley-VCH, Weinheim, 1998)Google Scholar
  28. 28.
    X. Guo, C. Schindler, S. Menzel, R. Waser, Appl. Phys. Lett. 91, 133513 (2007)CrossRefGoogle Scholar
  29. 29.
    C.-Y. Wu, X.-H. Qian, M.-S. Cheng, Y.-A. Liang, W.-M. Chen, IEEE J. Solid State Circuits 49, 2397 (2014)Google Scholar
  30. 30.
    P.T. Talole, S.T. Sawale, Int. J. Comput. Appl. 1, 24, (2010)Google Scholar
  31. 31.
    Data Sheet, K9XXG08UXM (2005)Google Scholar
  32. 32.
    Data Sheet, 48F3300L0YDQ0 (2003)Google Scholar
  33. 33.
    Data Sheet, HYB18T1G400 (2006)Google Scholar
  34. 34.
    M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk et al., in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 754 (2005)Google Scholar
  35. 35.
    N. Derhacobian, S.C. Hollmer, N. Gilbert, M.N. Kozicki, Proceedings of the IEEE, 98, 283, (2010)Google Scholar
  36. 36.
    D. Kamalanathan, U. Russo, D. Ielmini, M.N. Kozicki, Electron Device Lett. IEEE 30, 553 (2009)CrossRefGoogle Scholar
  37. 37.
    C. Schindler, M. Meier, R. Waser, M. Kozicki, in Non-Volatile Memory Technology Symposium, 2007. NVMTS’07, 82, (2007)Google Scholar
  38. 38.
    C. Schindler, S.P. Thermadam, R. Waser, M.N. Kozicki, E. Devices, Transactions on IEEE 54, 2762 (2007)CrossRefGoogle Scholar
  39. 39.
    S. Rahaman, S. Maikap, in Proceedings of IMW, 2010, 70, (2010)Google Scholar
  40. 40.
    C. Liaw, M. Kund, D. Schmitt-Landsiedel, I. Ruge, in Solid State Device Research Conference, 2007. ESSDERC 2007. 37th European, 226 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoise State UniversityBoiseUSA
  2. 2.Micron School of Materials Science and EngineeringBoise State UniversityBoiseUSA

Personalised recommendations