Synthesis and photoluminescence properties of Eu2+-activated Sr9In1−yLuy(PO4)7 phosphors

  • Qingxiu Yu
  • Lei Wang
  • Ping Huang
  • Qiufeng Shi
  • Yue Tian
  • Cai’e CuiEmail author


In this work, two series of phosphors of Sr9−xIn(PO4)7:xEu2+ and Sr8.97In1−yLuy(PO4)7:0.03Eu2+ with β-Ca3(PO4)2-type structure are prepared via a high temperature solid-state reaction. The XRD, photoluminescence, photoluminescence excitation spectra and decay times are investigated in detail. Upon excitation at 365 nm, the Sr9−xIn(PO4)7:xEu2+ phosphors show a obvious band centered at 410 nm and a little hump peaked at 630 nm ascribed to the 4f65d1–4f7 transitions of Eu2+ in different crystallographic sites. The excitation spectra show a broad band in the 250–500 nm, which is well-matched with the NUV LED chip. For the Sr8.97In1−yLuy(PO4)7:0.03Eu2+ phosphors, the another emission band centered at 520 nm emerged with the substitution of Lu3+ for In3+ on the basis of Sr9In(PO4)7:Eu2+ phosphor under the 365 nm excitation, which indicates that the presence of different Eu2+ luminescence centers. And emitting-color can be tuned from bluish-violet to white and yellow-green by varying the ratio of Lu3+ and In3+. Our results indicate these phosphors can be as an attractive candidate for the application of white LEDs by ions substitution to obtain white light and tunable luminescent.



This work was financially supported by the Natural Science Foundation of Shanxi Province (201601d011030), Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, and school fund of Taiyuan University of Technology (1205-04020102).


  1. 1.
    W. Sun, Y. Jia, R. Pang, H. Li et al., Sr9Mg(1.5)(PO4)7:Eu(2+): a novel broadband orange-yellow-emitting phosphor for blue light-excited warm white LEDs. ACS Appl. Mater. Interfaces 7, 25219–25226 (2015)CrossRefGoogle Scholar
  2. 2.
    W.B. Im, Y.-I. Kim, N.N. Fellows, H. Masui et al., A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes. Appl. Phys. Lett. 93, 091905 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Zhang, Y. Li, Y. Lv, L. Fan, Y. Hu, M. He, A full-color emitting phosphor Ca9Ce(PO4)7:Mn2+, Tb3+: efficient energy transfer, stable thermal stability and high quantum efficiency. Chem. Eng. J. 322, 314–327 (2017)CrossRefGoogle Scholar
  4. 4.
    X. Dong, J. Zhang, L. Zhang, X. Zhang, Z. Hao, Y. Luo, Yellow-emitting Sr9Sc(PO4)7:Eu2+, Mn2+ phosphor with energy transfer for potential application in white light-emitting diodes. Eur. J. Inorg. Chem. 2014, 870–874 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Zhang, M. Chen, Y. Gao, Investigation on luminescence of Na3Ca6(PO4)5:Eu2+ phosphor for LEDs. Display 49, 35–39 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Zhang, C. Jiang, Photoluminescence properties of emission-tunable Ca8MgLa(PO4)7: Eu2+, Mn2+ phosphors for white LEDs. Opt. Mater. Express 4, 2102 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, J. Zhang, C. Zhang, J. Xu et al., Phosphors: Ba9Lu2Si6O24:Ce3+: an efficient green phosphor with high thermal and radiation stability for solid-state lighting. Adv. Opt. Mater. 3, 1096–1101 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, J. Silver, R.-J. Xie, J. Zhang et al., An excellent cyan-emitting orthosilicate phosphor for NUV-pumped white LED application. J. Mater. Chem. C 5, 12365–12377 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Ji, J. Zhang, Y. Li, S. Liao et al., Improving quantum efficiency and thermal stability in blue-emitting Ba2 – xSrxSiO4: Ce3+ phosphor via solid solution. Chem. Mater. 30, 5137–5147 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Chen, Z. Xia, M.S. Molokeev, C.C. Lin et al., Probing Eu2+ luminescence from different crystallographic sites in Ca10M(PO4)7:Eu2+ (M = Li, Na, and K) with β-Ca3(PO4)2-type structure. Chem. Mater. 29, 7563–7570 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Cui, L. Wang, Q. Shi, Y. Tian, P. Huang, C.e. Cui, Color-tunable luminescence and energy transfer of Eu2+/Mn2+ co-doped Sr9Lu(PO4)7 phosphors for white LEDs. Polyhedron. 141, 284–288 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Dong, J. Zhang, X. Zhang, Z. Hao, S. Lv, Synthesis and photoluminescence properties of Eu2+ doped Sr9Sc(PO4)7 phosphors for white light-emitting diodes. Ceram. Int. 40, 5421–5423 (2014)CrossRefGoogle Scholar
  13. 13.
    C.-H. Huang, Y.-C. Chen, T.-M. Chen, T.-S. Chan, H.-S. Sheu, Near UV-pumped yellow-emitting Sr8MgSc(PO4)7:Eu2+ phosphor for white-light LEDs with excellent color rendering index. J. Mater. Chem. 21, 5645 (2011)CrossRefGoogle Scholar
  14. 14.
    C.-H. Huang, Y.-C. Chiu, Y.-T. Yeh, T.-M. Chen, Novel Eu2+-activated yellow-emitting Sr8MgLu(PO4)7 phosphors for white-light near-ultraviolet LEDs. Mater. Express 2, 303–310 (2012)CrossRefGoogle Scholar
  15. 15.
    C.H. Huang, T.M. Chen, Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index. Inorg. Chem. 50, 5725–5730 (2011)CrossRefGoogle Scholar
  16. 16.
    C.-H. Huang, D.-Y. Wang, Y.-C. Chiu, Y.-T. Yeh, T.-M. Chen, Sr8MgGd(PO4)7:Eu2+: yellow-emitting phosphor for application in near-ultraviolet-emitting diode based white-light LEDs. RSC Adv. 2, 9130 (2012)CrossRefGoogle Scholar
  17. 17.
    A.A. Belik, F. Izumi, T. Ikeda, M. Okui et al., Whitlockite-related phosphates Sr9A(PO4)7 (A = Sc, Cr, Fe, Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data. J. Solid State Chem. 168, 237–244 (2002)CrossRefGoogle Scholar
  18. 18.
    L.G.V. Uitert, An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds. J. Lumin. 29, 1–9 (1984)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, C. Jiang, Luminescence properties of Ca14Mg2(SiO4)8: Eu2+ from various Eu2+ sites for white-light-emitting diodes. Mater. Res. Bull. 60, 467–473 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Liao, L. Nie, Q. Wang, S. Liu, J. Fu, H.-R. Wen, Microwave hydrothermal method and photoluminescence properties of Gd2Sn2O7: Eu3+ reddish orange phosphors. J. Lumin. 183, 377–382 (2017)CrossRefGoogle Scholar
  21. 21.
    G. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A 28(6), 444–445 (1968)CrossRefGoogle Scholar
  22. 22.
    L.G. Van Uitert, Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 114, 1048 (1967)CrossRefGoogle Scholar
  23. 23.
    C.H. Huang, Y.C. Chiu, Y.T. Yeh, T.S. Chan, T.M. Chen, Eu(2+)-activated Sr8ZnSc(PO4)7: a novel near-ultraviolet converting yellow-emitting phosphor for white light-emitting diodes. ACS Appl. Mater. Interfaces. 4, 6661–6668 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Jia, W. Lu, N. Guo, W. Lu, Q. Zhao, H. You, Utilizing Tb3+ as an energy transfer bridge to connect Eu2+-Sm3+ luminescent centers: realization of efficient Sm3+ red emission under near-UV excitation. Chem. Commun. (Camb.). 49, 2664–2666 (2013)CrossRefGoogle Scholar
  25. 25.
    D.L. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (1954)CrossRefGoogle Scholar
  26. 26.
    W. Lv, Y. Jia, Q. Zhao, W. Lü et al., Synthesis, structure, and luminescence properties of K2Ba7Si16O: Eu2+ for white light emitting diodes. J. Phys. Chem. C 118, 4649–4655 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Li, R. Zhao, Y. Jia, W. Sun et al., Sr1.7Zn0.3CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties. ACS Appl. Mater. Interfaces. 6, 3163–3169 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and OptoelectronicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi ProvinceTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations