Advertisement

Effect of nickel (Ni) on the growth rate of Cu6Sn5 intermetallic compounds between Sn–Cu–Bi solder and Cu substrate

  • He Gao
  • Fuxiang Wei
  • Yanwei Sui
  • Jiqiu Qi
  • Yezeng He
  • Qingkun Meng
Article
  • 21 Downloads

Abstract

In this work, the lead-free composite solder was fabricated by mixing Ni element with Sn–0.7Cu–10Bi solder. The effect of nickel (Ni) addition on the growth behavior of intermetallic compounds (IMCs) between Sn–0.7Cu–10Bi–xNi (x = 0, 0.05, 0.10, 0.15 and 0.20, in wt%) solder and Cu substrate during the soldering process was studied. The microstructure and the IMCs growth of the solder joints under thermal aging were systematically investigated. The results shown that the addition of Ni element has a slightly influence on melting point of the solder. Moreover, the addition of Ni element can change Cu6Sn5 shape from scalloped-like structure into flat-like one. Moreover, the results reveal that Ni can considerably inhibit the growth and reduce the thickness of Cu6Sn5. The thickness of Cu6Sn5 ranges from 3.07 to 8.42 µm after aging process The diffusion coefficient (D) is 1.80 × 10−3 µm2 h−1 and growth rate (dH/dt) is 4.08 × 10−7 µm s−1 of the Cu6Sn5 when the Ni content come to 0.15 wt%. The (Cu,Ni)6Sn5 phase formed in the IMCs layer when Ni was added to the solder, and it can effectively hinder the diffusion of Cu atoms and depressed the growth rate of Cu6Sn5.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2017XKQY004).

References

  1. 1.
    Y.C. Chan, D. Yang, Prog. Mater. Sci. 55, 428–475 (2010)CrossRefGoogle Scholar
  2. 2.
    H.Y. Lee, A. Sharma, S.H. Kee, Y.W. Lee, J.T. Moon, J.P. Jung, Electron. Mater. Lett. 10, 997–1004 (2014)CrossRefGoogle Scholar
  3. 3.
    Z.L. Ma, S.A. Belyakov, K. Sweatman, T. Nishimura, T. Nishimura, C.M. Gourlay, Nat. Commun. 8, 1916 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Sharma, D.H. Jung, M.H. Roh, J.P. Jung, Electron. Mater. Lett. 12, 1–8 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Nogita, Intermetallics 18, 145–149 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Sharma, D.E. Xu, J. Chow, M. Mayer, H.R. Sohn, J.P. Jung, Electron. Mater. Lett. 11, 1072–1077 (2015)CrossRefGoogle Scholar
  7. 7.
    P. Xue, S.B. Xue, Y.F. Shen, F. Long, H. Zhu, J. Mater. Sci. Mater. Electron. 25, 3520–3525 (2014)CrossRefGoogle Scholar
  8. 8.
    X. Long, W. Tang, S. Wang, X. He, Y. Yao, J. Mater. Sci. Mater. Electron. 29, 7177–7187 (2018)CrossRefGoogle Scholar
  9. 9.
    A.A. El-Daly, A. Fawzy, S.F. Mansour et al., J. Mater. Sci. Mater. Electron. 24, 2976–2988 (2013)CrossRefGoogle Scholar
  10. 10.
    A.A. El-Daly, A.E. Hammad, Mater. Des. 40, 292–298 (2012)CrossRefGoogle Scholar
  11. 11.
    M.A.A.M. Salleh, A.M.M.A. Bakri, M.H. Zan Hazizi, F. Somidin, N.F.M. Alui, Z.A. Ahmad, Mater. Sci. Eng. A 556, 633–637 (2012)CrossRefGoogle Scholar
  12. 12.
    C.M. Gourlay, K. Nogita, A.K. Dahle et al., Acta Mater. 59, 4043–4054 (2011)CrossRefGoogle Scholar
  13. 13.
    Satyanarayan, K.N. Prabhu, Adv. Colloid Interface Sci. 166, 87 (2011)CrossRefGoogle Scholar
  14. 14.
    M.E. Alam, M. Gupta, Electron. Mater. Lett. 10, 515–524 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Morando, O. Fornaro, O. Garbellini, H. Palacio, J. Mater. Sci. Mater. Electron. 25, 3440–3447 (2014)CrossRefGoogle Scholar
  16. 16.
    L. Yang, C. Du, J. Dai et al., J. Mater. Sci. Mater. Electron. 24, 4180–4185 (2013)CrossRefGoogle Scholar
  17. 17.
    F. Wang, H. Chen, Y. Huang, C. Yan, J. Mater. Sci. Mater. Electron. 28, 1–12 (2018)Google Scholar
  18. 18.
    Z. Lai, D. Ye, J. Mater. Sci. Mater. Electron. 27, 3182–3192 (2016)CrossRefGoogle Scholar
  19. 19.
    X.P. Zhang, C.B. Yu, Y.P. Zhang, S. Shrestha, L. Dorn, J. Mater. Process. Technol. 192, 539–542 (2007)CrossRefGoogle Scholar
  20. 20.
    K. Kanlayasiri, T. Ariga, Mater. Des. 86, 371–378 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Ma, X. Li, W. Zhou, L. Yang, P. Wu, Mater. Des. 113, 264–272 (2017)CrossRefGoogle Scholar
  22. 22.
    T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, Mater. Sci. Eng. R 68, 1–38 (2010)CrossRefGoogle Scholar
  23. 23.
    Q.B. Tao, L. Benabou, L. Vivet, V.N. Le, F.B. Ouezdou, Mater. Sci. Eng. A 669, 403–416 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.-K. Lee, Y.H. Ko, J.K. Kim et al., Electron. Mater. Lett. 9, 31–39 (2013)CrossRefGoogle Scholar
  25. 25.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 37, 1–60 (2006)Google Scholar
  26. 26.
    J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 59, 1198–1211 (2011)CrossRefGoogle Scholar
  27. 27.
    J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, D.A. Hutt, Acta Mater. 54, 2907–2922 (2006)CrossRefGoogle Scholar
  28. 28.
    O.Y. Liashenko, S. Lay, F. Hodaj, Acta Mater. 117, 216–227 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Ji, Y. Qiao, M. Li, Scr. Mater. 110, 19–23 (2016)CrossRefGoogle Scholar
  30. 30.
    G. Ban, F. Sun, Y. Liu, S. Cong, Solder. Surf. Mt. Technol. 29, 92–98 (2017)CrossRefGoogle Scholar
  31. 31.
    P.L. Tu, Y.C. Chan, K.C. Hung, J.K.L. Lai, Scr. Mater. 44, 317–323 (2001)CrossRefGoogle Scholar
  32. 32.
    F. Gao, T. Takemoto, H. Nishikawa, Mater. Sci. Eng. A 420, 39–46 (2006)CrossRefGoogle Scholar
  33. 33.
    A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Mater. Des. 55, 309–318 (2014)CrossRefGoogle Scholar
  34. 34.
    K. Nogita, T. Nishimura, Scr. Mater. 59, 191–194 (2008)CrossRefGoogle Scholar
  35. 35.
    H.F. Zou, H.J. Yang, Z.F. Zhang, Acta Mater. 56, 2649–2662 (2008)CrossRefGoogle Scholar
  36. 36.
    N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, W. Dong, Sci. Rep. 5, 13491 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • He Gao
    • 1
    • 2
    • 3
  • Fuxiang Wei
    • 1
    • 2
    • 3
  • Yanwei Sui
    • 1
    • 2
  • Jiqiu Qi
    • 1
    • 3
  • Yezeng He
    • 1
  • Qingkun Meng
    • 1
  1. 1.School of Materials Science & EngineeringChina University of Mining & TechnologyXuzhouPeople’s Republic of China
  2. 2.The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology & Equipments UnderChina University of Mining & TechnologyXuzhouPeople’s Republic of China
  3. 3.The Xuzhou City Key Laboratory of High Efficient Energy Storage Technology & Equipments underChina University of Mining & TechnologyXuzhouPeople’s Republic of China

Personalised recommendations