Simple, controllable fabrication and electromagnetic wave absorption properties of hollow Ni nanosphere

  • Guosheng Wen
  • Xiuchen Zhao
  • Ying Liu
  • Gehui Sun
  • Yingchun Wang


Electromagnetic wave (EW) absorption material with light weighted, low addition, high efficiency and wide variable frequency band is a highly concerned topic which needs to be explored. In this study, hollow Ni nanospheres with fascinating EW absorption properties and light-weighted superiority were successfully synthesized using a simple and rapid strategy with controllable structures and compositions. The shell thickness and average diameter of hollow Ni nanosphere were about 360 nm and 30 nm respectively. Moreover, the EW absorption of hollow Ni nanosphere was investigated. The reflection loss of hollow Ni nanospheres was up to − 43.6 dB, and the bandwidth achieved 3.6 GHz at 11 GHz with the thickness of only 2.1 mm. Furthermore, the wide variable frequency microwave absorption was successfully realized by the controllable structure and compositions, and the absorption peak shifted from 2.78 to 12.59 GHz and 14.1–17.66 GHz, covering 83% of the measured frequency range. In summary, it can be demonstrated that hollow Ni sphere is an excellent choice in the field of EW absorbing materials.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest to this work.


  1. 1.
    Y. Li, J.D. Luo, X.Y. Luo, X.F. Hu, J.C. Wang, K.F. Liang, Yu, Fabrication of TiO2 hollow nanostructures and their application in Lithium ion batteries. J. Alloys Compd. 651, 685–689 (2015)Google Scholar
  2. 2.
    C.Z. Liang, S.P. Sun, B.W. Zhao, T.S. Chung, Integration of nanofiltration hollow fiber membranes with coagulation-flocculation to treat colored wastewater from a dyestuff manufacturer: A pilot-scale study. Ind. Eng. Chem. Res 54, 11159–11166 (2015)Google Scholar
  3. 3.
    Z.H. Zhang, S. Zhang, L.H. He, D.L. Peng, F.F. Yan, M.H. Wang, J.H. Zhao, H.Z. Zhang, S.M. Fang, Feasible electrochemical biosensor based on plasma polymerization-assisted composite of polyacrylic acid and hollow TiO2 spheres for sensitively detecting lysozyme. Biosens. Bioelectron. 74, 384–390 (2015)Google Scholar
  4. 4.
    H.L. Fei, X. Liu, Z.W. Li, Hollow cobalt coordination polymer microspheres: A promising anode material for lithium-ion batteries with high performance. Chem. Eng. J. 281, 453–458 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Tian, X.L. Zhou, Y.H. Zhang, Z. Zhou, X.H. Bu, MOF derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg. Chem. 54, 8159–8161 (2015)Google Scholar
  6. 6.
    T.W. Sun, Y.J. Zhu, C. Qi, F. Chen, Y.Y. Jiang, Y.G. Zhang, J. Wu, C.T. Wu, Templated solvothermal synthesis of magnesium silicate hollow nanospheres with ultrahigh specific surface area and their application in high-performance protein adsorption and drug delivery. J.Mater. Chem. B 4, 3257–3268 (2016)CrossRefGoogle Scholar
  7. 7.
    J.Z. He, X.X. Wang, Y.L. Zhang et al., Small magnetic nanoparticles decorating reduced graphene oxides to tune electromagnetic attenuation capacity. J. Mater. Chem. C 4(29), 7130–7140 (2016)Google Scholar
  8. 8.
    P.P. Yang, Y. Liu, X.C. Zhao et al., Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 31(16), ,2398–2406 (2016)CrossRefGoogle Scholar
  9. 9.
    I. Shanenkov, A. Sivkov, A. Ivashutenko et al., Magnetite hollow microspheres with a broad absorption bandwidth of 11.9 GHz: toward promising lightweight electromagnetic microwave absorption. Phys. Chem. Chem. Phys. 19, 19975–19983 (2017)CrossRefGoogle Scholar
  10. 10.
    Y.D. Deng, L. Zhao, B. Shen et al., Microwave characterization of submicrometer-sized nickel hollow sphere composites. J. Appl. Phys. 100(1), ,534 (2006)CrossRefGoogle Scholar
  11. 11.
    X.B. Yu, B. Qu, Y. Zhao et al., General growth of hollow transition metal (Fe, Co, Ni) oxide nanoparticles on graphene sheets through Kirkendall effect as anodes for high-performance lithium-ion batteries. Chem. Eur. J. 22(5), 1638–1645 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Bateer, L. Wang, L. Zhao et al., A novel Fe3C/graphitic carbon composite with electromagnetic wave absorption properties in the C-band. RSC Adv. 5(74), 60135–60140 (2015)CrossRefGoogle Scholar
  13. 13.
    B. Zhao, G. Shao, B.B. Fan et al., Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. Phys. Chem. Chem. Phys.17(14), 8802–8810 (2015)CrossRefGoogle Scholar
  14. 14.
    N. Zhang, Y. Huang, M. Zong et al., Synthesis of ZnS quantum dots and CoFe2O4, nanoparticles Co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chem. Eng. J. 308, 214–221 (2017)CrossRefGoogle Scholar
  15. 15.
    S.L. Wen, Y. Liu, X.C. Zhao et al., Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles. Phys. Chem. Chem. Phys. 16(34), ,18333–18340 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, X.M. Wu, W.Z. Zhang et al., One-pot synthesis of MnFe2O4 nanoparticles-decorated reduced graphene oxide for enhanced microwave absorption properties. Mater. Technol. 32(1), 32–37 (2016)CrossRefGoogle Scholar
  17. 17.
    P. Liu, Z. Yao, J. Zhou, Preparation of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4, nanocomposites and their excellent microwave absorption properties. Ceram. Int. 41(10), ,13409–13416 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Reese, G. Dalamani, S. Kothlow et al., Ontogenesis of the chicken bronchus associated lymphoid tissue (BALT). Anat. Histol. Embryol. 34(s1), ,41–41 (2005)Google Scholar
  19. 19.
    L. Alidokht, A.R. Khataee, A. Reyhanitabar et al., Reductive removal of Cr(VI) by starch-stabilized FeO, nanoparticles in aqueous solution. Desalination 270(1–3), ,105–110 (2011)CrossRefGoogle Scholar
  20. 20.
    P.P. Yang et al., Facile, large-scale, and expeditious synthesis of hollow Co and Co@Fe nanostructures: application for electromagnetic wave absorption. J. Phys. Chem C 121(15), 8557–8568 (2017)CrossRefGoogle Scholar
  21. 21.
    R. Ji et al., Solvothermal synthesis of CoxFe3−xO4 spheres and their microwave absorption properties. J. Mater. Chem. C 2(29), 5944–5953 (2014)CrossRefGoogle Scholar
  22. 22.
    B. Zhao, B.B. Fan, G. Shao, B.B. W et al., Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method. Appl. Surf. Sci. 307, 293–300 (2014)CrossRefGoogle Scholar
  23. 23.
    B. Zhao, G. Shao et al., Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. J. Mater. Sci. 26, 5393–5399 (2015)Google Scholar
  24. 24.
    Z.Q. Qiao, S.K. Pan et al., Structure and microwave absorption properties of ,Nd–Co–Ni alloys. J. Mater. Sci. 27, 7487–7493 (2016)Google Scholar
  25. 25.
    P.P. Yang, Y. Liu et al., Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv. Powder Technol. 27, 1128–1133 (2016)CrossRefGoogle Scholar
  26. 26.
    Y.D. Deng, X. Liu, B. Shen, L. Liu, W.B. Hu, Preparation and microwave characterization of submicrometer-sized hollow nickel spheres. J. Magn. Magn. Mater. 303, 181–184 (2006)CrossRefGoogle Scholar
  27. 27.
    Y.D. Deng, L. Zhao, B. Shen, L. Liu, W.B. Hu, Microwave characterization of submicrometer-sized nickel hollow sphere composites. J. Appl. Phys. 100, 014304 (2006)CrossRefGoogle Scholar
  28. 28.
    Z.B. Li, B. Shen, Y.D. Deng, L. Liu, W.B. Hu, Preparation and microwave absorption properties of electroless Co–P-coated nickel hollow spheres. Appl. Surf. Sci. 255, 4542–4546 (2009)CrossRefGoogle Scholar
  29. 29.
    W. Feng, Y.M. Wang, J.C. Chen et al., Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: Facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016)CrossRefGoogle Scholar
  30. 30.
    H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C 3(29), 7677–7690 (2015)CrossRefGoogle Scholar
  31. 31.
    X. Ding, Y. Huang, J.G. Wang, H.W. Wu, P.B. Liu, Excellent electromagnetic wave absorption property of quaternary composites consisting of reduced graphene oxide, polyaniline and FeNi3@SiO2 nanoparticles. Appl. Surf. Sci 357, 908–914 (2015)CrossRefGoogle Scholar
  32. 32.
    P.B. Liu, Y. Huang, J. Yan, Y.W. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater.Interfaces 8(8), 5536–5546 (2016)CrossRefGoogle Scholar
  33. 33.
    H.L. Yu et al., Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22(40), 21679 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Feng et al., Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016)CrossRefGoogle Scholar
  35. 35.
    B. Quan et al., Incorporation of dielectric constituents to construct ternary heterojunction structures for high-efficiency electromagnetic response. J Colloid Interface Sci 498, 161–169 (2017)CrossRefGoogle Scholar
  36. 36.
    F.S. Wen, F. Zhang, Z.Y. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J.Phys. Chem. C 115, 14025–14030 (2011)CrossRefGoogle Scholar
  37. 37.
    G.X. Tong, F.T. Liu, W.H. Wu et al., Rambutan-like Ni/MWCNT heterostructures: Easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J Mater Chem A 2(20), 7373–7382 (2014)CrossRefGoogle Scholar
  38. 38.
    J.H. Luo, Y. Zuo, P. Shen et al., Excellent microwave absorption properties by tuned electromagnetic parameters in polyaniline-coated Ba0.9La0.1Fe11.9Ni0.1O19/reduced graphene oxide nanocomposites. RSC Adv. 7(58), ,36433–36443 (2017)CrossRefGoogle Scholar
  39. 39.
    D.P. Sun, Q. Zou, Y.P. Wang et al., Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6(12), ,6557–6562 (2014)CrossRefGoogle Scholar
  40. 40.
    Y.L. Ren, H.Y. Wu, M.M. Lu et al., Quaternary nanocomposites consisting of graphene, Fe3O4@Fe Core@Shell, and ZnO Nanoparticles: Synthesis and Excellent Electromagnetic Absorption Properties. ACS Appl. Mater. Interfaces 4(12), ,6436–6442 (2012)CrossRefGoogle Scholar
  41. 41.
    K. Chesnel, A. Safsten, M. Rytting, E.E. Fullerton, Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling. Nat. Commun. 7, 11648 (2016)CrossRefGoogle Scholar
  42. 42.
    J. Espín, R. Zarzuela, N. Statuto, J. Juanhuix, D. Maspoch, I. Imaz, E. Chudnovsky, J. Tejada, Narrowing the zero-field tunneling resonance by decreasing the crystal symmetry of Mn12 acetate. J. Am.Chem. Soc 138(29), 9065–9068 (2016)CrossRefGoogle Scholar
  43. 43.
    G.J. Xiao, C.Y. Zhu, Y.M. Ma, B.B. Liu, G.T. Zou, B. Zou, Unexpected room-temperature ferromagnetism in nanostructured Bi2Te3. Angew.Chem 126(3), 748–752 (2014)CrossRefGoogle Scholar
  44. 44.
    H.Y. Zhang, Y.J. Xu, J.G. Zhou, J.F. Jiao, Y.J. Chen, H. Wang, C.Y. Liu, Z.H. Jiang, Z.H. Wang, Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires. J.Mater. Chem. C 3(17), 4416–4423 (2015)CrossRefGoogle Scholar
  45. 45.
    Z.T. Zhu, X. Sun, H.R. Xue, H. Guo, X.L. Fan, X.C. Pan, J.P. He, Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. J. Mater. Chem. C 2(32), ,6582–6591 (2014)CrossRefGoogle Scholar
  46. 46.
    M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, W.B. Wang, K.H. Su, Q.Y. Zhang, Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@ MnO2 composite microspheres with lightweight feature. J. Alloys Compd. 693, 432–439 (2017)CrossRefGoogle Scholar
  47. 47.
    Y.B. Zhang, P. Wang, Y. Wang, L. Qiao, T. Wang, F.S. Li, Synthesis and excellent electromagnetic wave absorption properties of parallel aligned FeCo@C core-shell nanoflake composites. J. Mater. Chem. C 3(41), 10813–10818 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations