The fast formation of full Cu3Sn solder joints in Cu/Sn/Cu system by thermal gradient bonding

  • Zuozhu Yin
  • Fenglian Sun
  • Mengjiao Guo


To form full intermetallic compounds (IMCs) solder joints becomes widely available for the die bonding of the third generation semiconductor power devices. The fast formation of Cu3Sn in Cu/Sn(10 µm)/Cu solder joints were investigated by thermal compression bonding in a few seconds and under a low pressure of 0.1 MPa at ambient temperature. The results show that the temperature gradient produced by thermal compression bonding contributes to enhancing the interfacial reaction at the liquid Sn/solid Cu metallization interface. The scallop-liked Cu6Sn5 is formed while planar-liked Cu3Sn is formed between Cu and Cu6Sn5 at initial bonding stage. After that, the growth rate of scallop-liked Cu6Sn5 layer from cold end is faster than that from hot end and the thin planar-liked Cu3Sn layer becomes thick. This abnormal growth behavior of Cu6Sn5 is due to the fact that Cu atoms migrate from hot end to cold end by temperature gradient. The middle Sn layer is completely consumed with increasing bonding time. Cu6Sn5 and Cu3Sn are consisted of the solder joints and the planar-liked Cu3Sn grows with a transition to scallop-liked morphology until the full Cu3Sn solder joint is eventually formed, which indicates that the formation time of full IMCs solder joints can be narrowed by temperature gradient. This bonding process provides a new solution for the rapid acquisition of interconnect material for the third generation semiconductor power devices.



This work is supported by the National Natural Science Foundation of China (51174069) and National High Technology Research and Development Program (863 Program) of China (No. 2015AA033304).


  1. 1.
    R. Kisiel, Z. Szczepański, Die-attachment solutions for SiC power devices. Microelectron. Reliab. 49(6), 627–629 (2009)CrossRefGoogle Scholar
  2. 2.
    P.G. Neudeck, R.S. Okojie, L.Y. Chen, High-temperature electronics-a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065–1076 (2002)CrossRefGoogle Scholar
  3. 3.
    D.G. Senesky, Wide bandgap semiconductors for sensing within extreme harsh environments. ECS Trans. 50(6), 233–238 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Glazer, Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review. J. Electron. Mater. 23(8), 693–700 (1994)CrossRefGoogle Scholar
  5. 5.
    R.W. Wu, L.C. Tsao, R.S. Chen, Effect of 0.5 wt% nano-TiO2 addition into low-Ag Sn0.3Ag0.7Cu solder on the intermetallic growth with Cu substrate during isothermal aging. J. Mater. Sci. Mater. Electron. 26(3), 1858–1865 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Li, K. Moon, C.P. Wong, Electronics without Lead. Science 308(5727), 1419–1420 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R 27(5–6), 95–141 (2000)CrossRefGoogle Scholar
  8. 8.
    J.Y. Tsai, C.W. Chang, Y.C. Shieh, Y.C. Hu, C.R. Kao, Controlling the microstructure from the gold-tin reaction. J. Electron. Mater. 34(2), 182–187 (2005)CrossRefGoogle Scholar
  9. 9.
    H.G. Song, J.P. Ahn, J.W. Morris, The microstructure of eutectic Au-Sn solder bumps on Cu/electroless Ni/Au. J. Electron. Mater. 30(9), 1083–1087 (2001)CrossRefGoogle Scholar
  10. 10.
    L.M. Yin, D. Li, Z.X. Yao, G. Wang, A. Blackbum, Microstructures and properties of Bi-10Ag high temperature solder doped with Cu element. Microelectron. Reliab. 80, 79–84 (2018)CrossRefGoogle Scholar
  11. 11.
    S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, Interfacial reaction and die attach properties of Zn-Sn high-temperature solders. J. Electron. Mater. 38(2), 266–272 (2009)CrossRefGoogle Scholar
  12. 12.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron. Reliab. 52(2), 375–380 (2012)CrossRefGoogle Scholar
  13. 13.
    S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, Study on high temperature bonding reliability of sintered nano-silver joint on bare copper plate. Microelectron. Reliab. 55(12), 2524–2531 (2015)CrossRefGoogle Scholar
  14. 14.
    S.A. Paknejad, A. Mansourian, J. Greenberg, K. Khtatba, L.V. Parijs, S.H. Mannan, Microstructural evolution of sintered silver at elevated temperatures. Microelectron. Reliab. 63, 125–133 (2016)CrossRefGoogle Scholar
  15. 15.
    S.A. Paknejad, S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 70, 1–11 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Zhou, W.F. Gale, T.H. North, Modelling of transient liquid phase bonding. Int. Mater. Rev. 40(5), 181–196 (1995)CrossRefGoogle Scholar
  17. 17.
    W.F. Gale, D.A. Butts, Transient liquid phase bonding. Sci. Technol. Weld. Join. 9(4), 283–300 (2004)CrossRefGoogle Scholar
  18. 18.
    H.A. Mustain, W.D. Brown, S.S. Ang, Transient liquid phase die attach for high-temperature silicon carbide power devices. IEEE Trans. Compon. Packag. Technol. 33(3), 563–570 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Fujino, H. Narusawa, Y. Kuramochi, E. Higurashi, T. Suga, T. Shiratori, M. Mizukoshi, Transient liquid-phase sintering using silver and tin powder mixture for die bonding. Jpn. J. Appl. Phys. 55(4S), 04EC14 (2016)CrossRefGoogle Scholar
  20. 20.
    N.S. Bosco, F.W. Zok, Strength of joints produced by transient liquid phase bonding in the Cu-Sn system. Acta Mater. 53(7), 2019–2027 (2005)CrossRefGoogle Scholar
  21. 21.
    B.L. Liu, Y.H. Tian, C.X. Wang, R. An, Y. Liu, Extremely fast formation of Cu-Sn intermetallic compounds in Cu/Sn/Cu system via a micro-resistance spot welding process. J. Alloys Compd. 687, 667–673 (2016)CrossRefGoogle Scholar
  22. 22.
    Z.Z. Yin, F.L. Sun, M.J. Guo, The fast formation of Cu-Sn intermetallic compound in Cu/Sn/Cu system by induction heating process. Mater. Lett. 215, 207–210 (2017)CrossRefGoogle Scholar
  23. 23.
    H.J. Ji, M.G. Li, S. Ma, M.Y. Li, Ni3Sn4-composed die bonded interface rapidly formed by ultrasonic-assisted soldering of Sn/Ni solder paste for high-temperature power device packaging. Mater. Des. 108, 590–596 (2016)CrossRefGoogle Scholar
  24. 24.
    J.W. Yoon, J.G. Lee, J.B. Lee, B.I. Noh, S.B. Jung, Thermo-compression bonding of electrodes between FPCB and RPCB by using Pb-free solders. J. Mater. Sci. Mater. Electron. 23(1), 41–47 (2012)CrossRefGoogle Scholar
  25. 25.
    H.Y. Chen, C. Chen, Thermomigration of Cu-Sn and Ni-Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints. J. Mater. Res. 26(8), 983–991 (2011)CrossRefGoogle Scholar
  26. 26.
    C. Chen, H.Y. Hsiao, Y.W. Chang, F.Y. Ouyang, K.N. Tu, Thermomigration in solder joints. Mater. Sci. Eng. R 73(9), 85–100 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Qu, N. Zhao, H.T. Ma, H.J. Zhao, M.L. Huang, In situ study on the effect of thermomigration on intermetallic compounds growth in liquid-solid interfacial reaction. J. Appl. Phys. 115(20), 204907 (2014)CrossRefGoogle Scholar
  28. 28.
    F.Y. Ouyang, C.L. Kao, In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints. J. Appl. Phys. 110(12), 123525 (2011)CrossRefGoogle Scholar
  29. 29.
    F.Y. Ouyang, K.N. Tu, Y.S. Lai, A.M. Gusak, Effect of entropy production on microstructure change in eutectic SnPb flip chip solder joints by thermomigration. Appl. Phys. Lett. 89(22), 221906 (2006)CrossRefGoogle Scholar
  30. 30.
    P. Shewmon, Diffusion in Solids (Springer, Switzerland, 2016)CrossRefGoogle Scholar
  31. 31.
    N. Zhao, X.M. Pan, D.Q. Yu, H.T. Ma, L. Wang, Viscosity and surface tension of liquid Sn-Cu lead-free solders. J. Electron. Mater. 38(6), 828–833 (2009)CrossRefGoogle Scholar
  32. 32.
    V.I. Dybkov, Growth Kinetics of Chemical Compound Layers (International Science Publishing, Cambridge, 1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EngineeringHarbin UniversityHarbinPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations