Superior charge discharge ability of reduced graphene oxide/Li-ion embedded polymer composite films

  • Mayank PandeyEmail author
  • Manoj Balachandran
  • Girish M. Joshi
  • Narendra N. Ghosh
  • Arungalai S. Vendan


Electroactive polymeric composites are recent generation material for energy application in lithium batteries, solar cells and supercapacitors. In present study, reduced graphene oxide is prepared from graphite powder using liquid exfoliation. The synthesized reduced graphene oxide is embedded with polystyrene sulfonic acid/lithium phosphate polymer electrolyte to obtain polymer composite films. The dielectric studies of composite reveals huge change in relaxation time with addition of rGO in polymeric lithium ion composites. This attributes to decrease in ion-dipolar interaction strength and enhanced polymer segmental motion in presence of carbon. It also implies the activation of electrochemical properties of polystyrene sulfonic acid/lithium phosphate/reduced graphene oxide (PL–rGO) composites which can be effectively utilize for charge storage applications. The PL–rGO composite exhibits an improved electrochemical performance with different scan rate on potential window ranged between − 0.5 and 1.2 V. The specific capacitance value of ~ 17 F/g with high rate charge–discharge capability over 8000 cycles was observed. Higher electrochemical stability and steady charge/discharge behavior makes PL–rGO composites a promising candidate for charge storage applications.



This work is supported by CHRIST (Deemed to be University), Bangalore (Grant Number PDF/8070) under POSTDOCTORAL research project. Author would like to acknowledge CHRIST (Deemed to be University) and Department of Physics and Electronics for providing all the necessary facilities for the project.

Supplementary material

10854_2018_485_MOESM1_ESM.docx (832 kb)
Supplementary material 1. The temperature dependence dielectric graph for Polymer/rGO composites (PSSA:rGO::50:50) (PG-1) and cyclic voltammetery and charge-discharge profile of polymer/Li-ion (PL-1) is provided. (DOCX 831 KB)


  1. 1.
    L. Li, Z. Wu, S. Yuan, X.B. Zhang, Energy Environ. Sci. 7, 2101 (2014)CrossRefGoogle Scholar
  2. 2.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295(5564), 2425 (2002)CrossRefGoogle Scholar
  3. 3.
    M. Kammoun, S. Berg, H. Ardebili, Nanoscale RSC 00, 1 (2015)Google Scholar
  4. 4.
    Z. Song, T. Xu, M.L. Gordin, Y.B. Jiang, I.T. Bae, Q. Xiao, H. Zhan, J. Liu, D. Wang, Nano Lett. ACS 12, 2205 (2012)CrossRefGoogle Scholar
  5. 5.
    Y.S. Song, J.R. Youn, Carbon 44, 710 (2006)CrossRefGoogle Scholar
  6. 6.
    B. Li, R. Li, Y. Xie, J. Mat. Sci. 52, 2524 (2017)CrossRefGoogle Scholar
  7. 7.
    S.N. Baker, G.A. Baker, Angew. Chem. Int. Ed. 49, 6726 (2010)CrossRefGoogle Scholar
  8. 8.
    L. Shaobin, H.Z. Tingying, H. Mario, B. Ehid, W. Jun, J. Rongrong, K. Jing, C. Yuan, ACS Nano 5(9), 6971 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Jianfeng, H. Yizhe, S. Min, L. Xin, Q. Chen, L. Chen, Y. Mingxin, Chem. Mater. 21(15), 3514 (2009)CrossRefGoogle Scholar
  10. 10.
    S.T. Her, A. Adriano, K.C. Chun, P. Martin, J. Phys. Chem. C 115(36), 17647 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Ding-Xiang, P. Huan, L. Bo, V. Robert, X. Ling, R. Peng-Gang, H.W. Jian, M.L. Zhong, Adv. Functional Mat. 25, 1 (2014)Google Scholar
  12. 12.
    W. Hualan, H. Qingli, Y. Xujie, L. Lude, W. Xin, ACS Appl. Mater. Inter. 2(3), 821 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Boopathi, R.T. Antony, C. Aicheng, Chem. Commu. 53, 7828 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Haixin, W. Hongkai, Energy Environ. Sci. 6, 3483 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Yao, Z. Qi-Long, T. Nobuko, X. Qiang, J. Am. Chem. Soc. 137, 106 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Zhengtang, L. Ye, A.S. Luke, A.T. Charlie Johnson, J. Am. Chem. Soc. 131, 898 (2009)CrossRefGoogle Scholar
  17. 17.
    J.S. Yang, D.H. Huang, Q.L. Cao, Q. Li, L.Z. Wang, F.H. Wang, Chin. Phys. B 22, 098101 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.Z. Liu, Y.F. Li, Y.G. Yang, Y.F. Wen, M.Z. Wang, Scripta Mater. 68, 301 (2013)CrossRefGoogle Scholar
  19. 19.
    T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, Z. Sun, Electrochim. Acta 55, 4170 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Pandey, G.M. Joshi, N.N. Ghosh, Bull. Mat. Sci. 40, 655 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Pandey, G.M. Joshi, N.N. Ghosh, Int. J. Polym. Mat. Polym. Biomat. 65, 759 (2016)CrossRefGoogle Scholar
  22. 22.
    J.A. Seo, J.H. Koh, D.K. Roh, J.H. Kim, Solid State Ionics 180, 998 (2009)CrossRefGoogle Scholar
  23. 23.
    C.W. Lin, Y.F. Huang, M. Kannan, J. Power Sourc. 171, 340 (2007)CrossRefGoogle Scholar
  24. 24.
    C. Lee, P.K. Dutta, R. Ramamoorthy, A.A. Sheikh, J. Electrochem. Soc. 153(1), H–H4 (2006)Google Scholar
  25. 25.
    L. Wei, F. Wu, D. Shi, C. Hu, X. Li, W. Yuan, J. Wang, J. Zhao, H. Geng, H. Wei, Y. Wang, N. Hu, Y. Zhang, Sci. Rep. 3, 2636 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Bozkurt, Turk. J. Chem. 29, 117 (2005)Google Scholar
  27. 27.
    C.W. Liew, Y.S. Ong, J.Y. Lim, C.S. Lim, K.H. Teoh, S. Ramesh, Int. J. Electrochem. Sci. 8, 7779 (2013)Google Scholar
  28. 28.
    P. Mayank, G.M. Joshi, A. Mukherjee, P. Thomas, Polym. Int. 65(9), 1098 (2016)CrossRefGoogle Scholar
  29. 29.
    R.J. Maccallum, C.A. Vincent, Polymer Electrolyte Reviews—2 (Elsevier Science Publishers, London, 1989)Google Scholar
  30. 30.
    J.C. Dyre, J. Non Cryst. Solids 135, 219 (1991)CrossRefGoogle Scholar
  31. 31.
    M. Khutia, G.M. Joshi, P. Thomas, J. Mat. Sci. Mat. Elec. 27, 7685 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Solymar, D. Walsh, Lectures on the Electrical Properties of Materials (Oxford University Press, Great Britain, 1979)Google Scholar
  33. 33.
    R.J. Sengwa, P. Dhatarwal, S. Choudhary, Curr. App. Phys. 15, 135 (2015)CrossRefGoogle Scholar
  34. 34.
    T. Das, H. Chauhan, S. Dekha, S. Chaudhary, R. Boruah, B.K. Saikia, Microporous Mesoporous Mater. 253, 80 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Khandelwal, A. Kumar, J. Mat. Chem. A 00, 1 (2013)Google Scholar
  36. 36.
    Y. Sun, G. Shi, Poly. Phys. 52, 231 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Daschakraborty, R. Biswas, J. Chem. Phys. 140, 014504 (2014)CrossRefGoogle Scholar
  38. 38.
    A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, N. Manyala, J. Mater. Sci. 48, 6707 (2013)CrossRefGoogle Scholar
  39. 39.
    G. Xu, N. Aydemir, P.A. Kilmartin, J. Travas-Sejdic, Appl. Mater. Today 8, 35 (2017)CrossRefGoogle Scholar
  40. 40.
    N. Shalu, R.K. Singh, V.K. Singh, J. Mater. Chem. C. 3, 7305 (2015)CrossRefGoogle Scholar
  41. 41.
    G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Nano Lett. 11, 4438 (2011)CrossRefGoogle Scholar
  42. 42.
    B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, ACS Nano. 6, 4020 (2012)CrossRefGoogle Scholar
  43. 43.
    H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Chem. Rev. 114, 11788 (2014)CrossRefGoogle Scholar
  44. 44.
    X. Dong, L. Chen, J. Liu, S. Haller, Y. Wang, Y. Xia, Sci. Adv. 2(1), e1501038 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsChrist UniversityBengaluruIndia
  2. 2.Department of Engg. Physics and Engg. MaterialsInstitute of Chemical Technology (ICT) Mumbai off Campus Jalna-Marathwada RegionJalnaIndia
  3. 3.Department of ChemistryBirla Institute of Technology and Science, PilaniGoaIndia
  4. 4.Industrial Automation and Instrumentation Division, School of Electrical EngineeringVIT UniversityVelloreIndia

Personalised recommendations