Carboxymethyl cellulose aided fabrication of flaky structured mesoporous β-Co(OH)2/C nanocomposite for supercapacitors

  • I. Manohara Babu
  • J. Johnson William
  • G. MuralidharanEmail author


This paper reports ecofriendly synthesis of mesoporous cobalt hydroxide using carboxymethyl cellulose as carbon source. Different analytical investigations on this material indicate the formation of mesoporous flakes. This kind of morphology is highly favorable for energy storage applications. The electrochemical performance of the electrode material is evaluated for supercapacitor, in an alkaline electrolyte; it shows high specific capacitance and good rate capacity. In addition, it retains 93% of initial capacitance after 3000 repeated charge–discharge cycles. This attractive nanocomposite shows very low value of charge transfer resistance (1 Ω). We design an asymmetric supercapacitor device using β-Co (OH)2/C and activated carbon as electrode. This device exhibits a specific capacitance of 102 F g−1 at 1 A g−1. The outcomes of these studies suggest its usefulness in supercapacitor devices.

Supplementary material

10854_2018_482_MOESM1_ESM.docx (9.6 mb)
Supplementary material 1 (DOCX 9842 KB)


  1. 1.
    F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816 (2017)CrossRefGoogle Scholar
  2. 2.
    D.P. Dubal, N.R. Chodankar, D.H. Kim, P.G. Romero, Towards flexible solid-state supercapacitors for smart and electronics, Chem. Soc. Rev. 47, 12421 (2018)CrossRefGoogle Scholar
  3. 3.
    P. Vialat, C. Mousty, C.T. Gheho, G. Renaudin, H. Marteinz, J.C. Dupin, E. Elkaim, F. Leroux, High-performing monometallic cobalt layered double hydroxide supercapacitor with defined local structure. Adv. Funct. Mater. 24, 4831 (2014)CrossRefGoogle Scholar
  4. 4.
    C. Jiang, L. Jing, X. Huang, M. Liu, C. Du, T. Liu, X. Pu, X.L. Wang, Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum cells by piezo-phototronic effect. ACS Nano 11, 9405 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Wu, J. Peng, Z. Yu, Y. Zhou, Y. Guo, Z. Li, Y. Lin, K. Ruan, C. Wu, Y. Xie, Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 140, 493 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Liu, Z. Shan, W. Huang, D. Wang, Z. Lin, Z. Cao, P. Chen, S. Meng, L. Chen, Self-assembly of silicon@oxidised mesocarbon mesobeads encapsulated in carbon as anode material. ACS Appl. Mater. Interfaces 10, 4715 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Chen, W.K. Pang, H. Bai, T. Zhou, Y. Liu, S. Li, Z. Guo, Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 17, 429 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Zhao, P. Zhang, W. Fu, X. Ma, J. Zhou, X. Zhang, J. Li, E. Xie, Understanding the role of Co3O4 on stability between active hierarchies and scaffolds: an insight into NiMoO4 composites for supercapacitors. Appl. Surf. Sci. 416, 160 (2017)CrossRefGoogle Scholar
  9. 9.
    T. Nguyen, M.F. Montemor, γ–FeOOH and amorphous Ni-Mn hydroxide on carbon nanofoam paper electrodes for hybrid supercapacitors. J. Mater. Chem. A 6, 2612 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Liu, J. Wang, Q. Pan, An all-in-one self-healable capacitor with superior performance. J. Mater. Chem. A 6, 2500 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, F. Wang, H. Zhu, L. Zhou, X. Zheng, X. Li, Z. Chen, Y. Wang, D. Zhang, D. Pan, Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors. Appl. Surf. Sci. 416, 99 (2017)Google Scholar
  14. 14.
    B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, J. Zhang, T. Li, N. Wang, Z. Guo, S. Angaiah, In stiu grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Kumar, A. Subramania, K. Balakrishnan, Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim. Acta 149, 152 (2014)CrossRefGoogle Scholar
  16. 16.
    V. Shobana, K. Balakrishnan, P. Parthiban, A. Subramania, Electrospun Nd3+ doped LiMn2O4 nanofibers as high performance cathode material for Li-ion capacitors. ChemElectroChem 4, 2059 (2017)CrossRefGoogle Scholar
  17. 17.
    K. Singh, B. Kirubasankar, S. Angaiah, Synthesis and electrochemical performance of P2-Na0.67 AlxCo1–x O2 (0.0 × 0.5) nanopowders for sodium-ion capacitors. Ionics 23, 731 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, B. Shang, F. Lin, Y. Chen, R. Ma, B. Peng, Z. Deng, Controllable synthesis of hierarchical nickel hydroxide nanotubes for high performance supercapacitors. Chem. Commun. 54, 559 (2018)CrossRefGoogle Scholar
  19. 19.
    Q. Zhang, k Han, S. Li, M. Li, J. Li, K. Ren, Synthesis of garlic skin—derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10, 2427 (2018)CrossRefGoogle Scholar
  20. 20.
    N. Maheswari, G. Muralidharan, Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices. Appl. Surf. Sci. 416, 461 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Xing, M. Liao, C. Chang, M. Yin, D. Li, Y. Song, The effect of anions on the electrochemical properties of polyaniline for supercapacitors. Phys. Chem. Chem. Phys. 19, 14030 (2017)CrossRefGoogle Scholar
  22. 22.
    C.H. Wang, J.L. Liu, H.Y. Huang, Pseudocapacitive performance of β-Co(OH)2 enhanced by Ni(OH)2 formation on porous Ni/Cu electrode. Electrochim. Acta 182, 47 (2015)CrossRefGoogle Scholar
  23. 23.
    Z. Huang, Y. Zhao, Y. Song, Y. Li, G. Wu, H. Tang, J. Zhao, Study on the oxidation process of cobalt hydroxide to cobalt oxide at low temperatures. RSC Adv. 6, 80059 (2016)CrossRefGoogle Scholar
  24. 24.
    D. Deng, X. Xing, N. Chen, Y. Li, Y. Wang, Hydrothermal synthesis of β-Co(OH)2 nanoplatelets: a novel catalyst for CO oxidation. J. Phys. Chem. Solids 100, 107 (2017)CrossRefGoogle Scholar
  25. 25.
    C. Zhao, X. Wang, S. Wang, H. Wang, Y. Yang, W. Zheng, Pseudocapacitive properties of cobalt hydroxide electrodeposited on Ni-foam supported carbon nanomaterial. Mater. Res. Bull. 48, 3189 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Wu, C.Z. Yuan, Facile one-pot strategy synthesis of ultrathin α-Co(OH)2 nanosheets towards high-performance electrochemical capacitors. Mater. Lett. 85, 161 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Aghazadeh, H.M. Shiri, A.A.M. Barmi, Uniform β-Co(OH)2 disc-like nanostructures prepared by low-temperature electrochemical rout as an electrode material for supercapacitors. Appl. Surf. Sci. 273, 237 (2013)CrossRefGoogle Scholar
  28. 28.
    A.A.M. Barmi, M. Aghazadeh, B. Arhami, H.M. Shiri, A.A. Fazl, E. Jangju, Porous cobalt hydroxide nanosheets with excellent supercapacitive behavior. Chem. Phys. Lett. 541, 65 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Yang, H. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114, 111 (2010)CrossRefGoogle Scholar
  30. 30.
    J. Drofenik, M. Gaberscek, R. Dominko, F.W. Poulsen, M. Mogensen, S. Pojovnik, J. Jamnik, Cellulose as binding material in graphitic anodes for Li ion batteries: a performance and degradation study. Electrochim. Acta 48, 883 (2003)CrossRefGoogle Scholar
  31. 31.
    C. Yang, Z. Zhang, Z. Tian, K. Zhang, J. Li, Y. Lai, Effects of carboxymethyl cellulose on the electrochemical characteristics and the dendrite growth of zinc in alkaline solution. J. Electrochem. Chem. Soc. 163, A1836 (2016)CrossRefGoogle Scholar
  32. 32.
    P.P. Hankare, S.D. Jadhav, U.B. Sankpal, S.S. Chavan, K.J. Waghmare, B.K. Chougule, Synthesis, characterization and effect of sintering temperature on magnetic properties of mgni ferrite prepared by co-precipitation method. J. Alloys Compds. 475, 926 (2009)CrossRefGoogle Scholar
  33. 33.
    W.J. Zhou, M.W. Xu, D.D. Zhao, C.L. Xu, H.L. Li, Electrodeposition and characterization of ordered mesporous cobalt hydroxide films on different substrates for supercapacitors. Microporous Mesoporous Mater. 117, 55 (2009)CrossRefGoogle Scholar
  34. 34.
    L. Tian, K. Huang, Y. Liu, S. Liu, Topotactic synthesis of Co3O4 nanoboxes from Co(OH)2 nanoflakes. J. Solid State. Chem. 118, 2961 (2011)CrossRefGoogle Scholar
  35. 35.
    X. Tan, H. Gao, M. Yang, Y. Luan, W. Dong, Z. Jin, J. Yu, Y. Qi, Y. Feng, G. Wang, Synthesize of hierarchical sisal-like cobalt hydroxide and its electrochemical applications. J. Alloys Compds. 608, 282 (2014)CrossRefGoogle Scholar
  36. 36.
    E.M.S. Barbieri, E.P.C. Lema, M.F.F. Lelis, M.B.J.G. Freitas, Recycling of cobalt from spent Li-ion batteries as β-Co(OH)2 and the application of Co3O4 as pseudocapacitor. J. Power Sources 270, 158 (2014)CrossRefGoogle Scholar
  37. 37.
    R.D. Noce, S. Eugenio, T.M. Silva, M.J. Carmezim, M.F. Montemor, α-Co(OH)2/carbon foam composite as electrochemical capacitor electrode operating at 2 V in aqueous medium. J. Power Sources 288, 234 (2015)CrossRefGoogle Scholar
  38. 38.
    C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao, W. Zheng, Synthesis of Co(OH)2/graphene/ni foam nano-electrodes with excellent pseudo behavior and high cycling stability for supercapacitors. Int. J. Hydrog. Energy 37, 118486 (2012)Google Scholar
  39. 39.
    J. Wu, D. Zhang, Y. Wang, Y. Wan, B. Hou, Catalytic activity of graphene-cobalt hydroxide for oxygen reduction reaction in alkaline media. J. Power Sources 198, 122 (2012)CrossRefGoogle Scholar
  40. 40.
    C.M. Wu, C.Y. Fan, I.W. Sun, W.T. Tsai, J.K. Chang, Improved pseudocapacitive performance and cycle life cobalt hydroxide on an electrochemically derived nano-porous Ni framework. J. Power Sources 196, 7828 (2011)CrossRefGoogle Scholar
  41. 41.
    D. Ghosh, S. Giri, C.K. Das, Preparation of CTAB assisted hexagonal platelet Co(OH)2/graphene hybrid composite as efficient supercapacitor electrode material. ACS Sustain. Chem. Eng. 1, 1135 (2013)CrossRefGoogle Scholar
  42. 42.
    Z. Tai, J. Lang, X. Yan, Q. Xue, Mutually enhanced capacitances in carbon nanofiber/cobalt hydroxide composite paper for supercapacitor. J. Electrochem. Soc. 159, A485 (2012)CrossRefGoogle Scholar
  43. 43.
    I.M. Babu, K.K. Purushothaman, G. Muralidharan, Ag3O4 grafted NiO nanosheets for high performance supercapacitors. J. Mater. Chem. A 3, 420 (2015)CrossRefGoogle Scholar
  44. 44.
    S.H. Hazemi, A. Asghari, Electrochemical fabrication of Co(OH)2 nanostructures on electro-etched carbon fibers: characterization and its supercapacitive behavior. Mater. Lett. 142, 156 (2015)CrossRefGoogle Scholar
  45. 45.
    Y.S. He, D.W. Bai, X. Yang, J. Chen, X.Z. Liao, Z.F. Ma, A Co(OH)2-graphene nanosheets composite as high performance anode material for lithium ion batteries, electrochem. Electrochem. Commun. 12, 570 (2010)CrossRefGoogle Scholar
  46. 46.
    I. Zhang, X. Wang, J. ma, S. Liu, X. Yi, Preparation of cobalt hydroxide nanosheets on carbon nanotubes/carbon paper conductive substrate for supercapacitor application. Electrochim. Acta 104, 110 (2013)CrossRefGoogle Scholar
  47. 47.
    A. Subasri, K. Balakrishnan, E.R. Nagarajan, V. Devadoss, A. Subramania, Development of 2D La(OH)3/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim. Acta 281, 329 (2018)CrossRefGoogle Scholar
  48. 48.
    A. Subasri, K. Balakrishnan, M. Vignesh, V. Devadoss, A. Subramania, Facile synthesis of electrostatically anchored Nd(OH)3 nanorods onto graphene nanosheets as high capacitance electrode material for supercapacitors. New J. Chem. 42, 2923 (2018)CrossRefGoogle Scholar
  49. 49.
    F. Zhou, Q. Liu, J. Gu, W. Zhang, D. Zhang, Microwave assisted anchoring of flower like Co(OH)2 nanosheets on activated carbon to prepare hybrid electrodes for high-rate electrochemical capacitors. Electrochim. Acta 170, 328 (2015)CrossRefGoogle Scholar
  50. 50.
    S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Ag Incorporated Mn3O4/AC nanocomposites based supercapacitor devices with high energy density and high power density. Dalton Trans. 43, 17528 (2014)CrossRefGoogle Scholar
  51. 51.
    B. Kirubasakar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 355, 881 (2019)CrossRefGoogle Scholar
  52. 52.
    B. Kirubasankar, V. Murugadoss, S. Angaiah, Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv. 7, 5853 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. Manohara Babu
    • 1
  • J. Johnson William
    • 1
  • G. Muralidharan
    • 1
    Email author
  1. 1.Department of PhysicsThe Gandhigram Rural Institute (Deemed to be University)GandhigramIndia

Personalised recommendations