Advertisement

Enhancing the photovoltaic performance of perovskite solar cells by potassium ions doping

  • Shan Jia
  • Jinfeng Wang
  • Lei ZhuEmail author
Article
  • 110 Downloads

Abstract

Organometal halide perovskite solar cells (PSCs) have attracted much attention due to their high photovoltaic efficiency and low fabrication cost. The perovskite layer plays a critical role on the power conversion efficiency (PCE). The main issues in perovskite layer are the coverage and crystallinity of perovskite grain based on substrate. Here, potassium ions were doped into perovskite layer to improve the growth, structure, properties of perovskite films and the photovoltaic performance of PSCs. The potassium ions significantly affect the Jsc and efficiency but affect the Voc slightly. The Jsc increases from 14.73 to 19.98 mA cm−2, and the efficiency increases from 10.16 to 13.57% at the doping level of 0.5% (molar ratio). The incorporation of potassium ions into perovskite also affects the crystallisation and morphology of the perovskite films and thus the PCE of PSCs. The crystallinity and denseness of perovskite film are enhanced and crystallite size is enlarged after potassium ions are doped into perovskite layer. At the same time, hysteresis free and stable device is obtained with the PSC at the doping level of 0.5% of potassium ions (molar ratio).

Notes

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 2015XKMS067).

Supplementary material

10854_2018_477_MOESM1_ESM.docx (224 kb)
Supplementary material 1 (DOCX 223 KB)

References

  1. 1.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, Science 342, 344 (2013)CrossRefGoogle Scholar
  2. 2.
    Z. Huanping, C. Qi, L. Gang, Science 345, 542 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, J. Phys. Chem. Lett. 5, 3241 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Colella, E. Mosconi, P. Fedeli, A. Listorti, A. Rizzo, J. Chem. Mater. 25, 4613 (2013)CrossRefGoogle Scholar
  5. 5.
    P.C. Jr, T.J. Savenije, M. Abdellah, J. Am. Chem. Soc. 136, 5189 (2014)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    O. Malinkiewicz, A. Yella, H.L. Yong, Nat. Photonics. 8, 128 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Isikgor, B. Li, H. Zhu, J. Mater. Chem. A. (2016).  https://doi.org/10.1039/c6ta03381d CrossRefGoogle Scholar
  9. 9.
    N.J. Jeon, J.H. Noh, W.S. Yang, Nature 517, 476 (2015)CrossRefGoogle Scholar
  10. 10.
    W.S. Yang, J.H. Noh, N.J. Jeon, Science 348, 1234 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Shi, Y. Luo, H. Wei, ACS. Appl. Mater. Interfaces. 6, 9711 (2014)CrossRefGoogle Scholar
  12. 12.
    M.J. Carnie, C. Charbonneau, M.L. Davies, Chem. Commun. 49, 7893 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Ogomi, A. Morita, S. Tsukamoto, J. Phys. Chem. Lett. 5, 1004 (2014)CrossRefGoogle Scholar
  14. 14.
    F. Hao, C.C. Stoumpos, R.P.H. Chang, J. Am. Chem. Soc. 45, 8094 (2014)CrossRefGoogle Scholar
  15. 15.
    X.K. Xin, M. He, W. Han, J. Jung, Z.Q. Lin, Angew. Chem. Int. Ed. 50, 11739 (2011)CrossRefGoogle Scholar
  16. 16.
    P.C. Dai, G. Zhang, Y.C. Chen, H.C. Jiang, Z.Y. Feng, Z.J. Lin, J.H. Zhan, Chem. Commun. 48, 3006 (2012)CrossRefGoogle Scholar
  17. 17.
    N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, Angew. Chem. Int. Ed. 53, 3151 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, M. Yang, S. Pang, K. Zhu, K.N.P. Padture, J. Am. Chem. Soc. 138, 5535 (2016)CrossRefGoogle Scholar
  19. 19.
    D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, Science. 342, 341 (2013)CrossRefGoogle Scholar
  20. 20.
    N. Pellet, P. Gao, G. Gregori, Angew. Chem. 53, 3151 (2014)CrossRefGoogle Scholar
  21. 21.
    N.K. Noel, S.D. Stranks, A. Abate, Energy Environ. Sci. 7, 3061 (2014)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, X. Ren, B. Liu, Energy Environ. Sci. 10, 2095–2102 (2017)Google Scholar
  23. 23.
    T.W. Wang, Z. Wang, S. Pathak, Energy Environ. Sci. 9, 2892–2901 (2016)Google Scholar
  24. 24.
    K.M. Boopathi, R. Mohan, T.Y. Huang, J. Mater. Chem. A. 4, 1591 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Chang, Z. Lin, H. Zhu, F.H. Isikgor, J. Mater. Chem. A. 4, 16546 (2016)CrossRefGoogle Scholar
  26. 26.
    N.J. Jeon, J.H. Noh, Y.C. Kim, Nat. Mater. 13, 897 (2014)CrossRefGoogle Scholar
  27. 27.
    T.C. Steven, Ferroelectrics. 470, 13 (2014)CrossRefGoogle Scholar
  28. 28.
    J.H. Heo, M.S. You, M.H. Chang, Nano Energy 15, 530 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Huang, J. Zhu, Y. Ding, ACS Appl. Mater. Interfaces 8, 8162 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Kubota, J.W. Mullin, J. Cryst. Growth 152, 203 (1995)CrossRefGoogle Scholar
  31. 31.
    K. Sangwal, J. Cryst. Growth 203, 197 (1999)CrossRefGoogle Scholar
  32. 32.
    J.J. De Yoreo, P.U. Gilbert, N.A. Sommerdijk, Science. 349, 6760 (2015)CrossRefGoogle Scholar
  33. 33.
    T. Bu, X. Liu, Y. Zhou, Energy Environ. Sci. 10, 2509–2515 (2017)CrossRefGoogle Scholar
  34. 34.
    T.J. Jacobsson, J.P. Correabaena, E.H. Anaraki, J. Am. Chem. Soc. 138, 10331 (2016)CrossRefGoogle Scholar
  35. 35.
    B. Chen, M. Yang, S. Priya, J. Phys. Chem. Lett. 7, 905 (2016)CrossRefGoogle Scholar
  36. 36.
    H.W. Chen, N. Sakai, M. Ikegami, J. Phys. Chem. Lett. 6, 164 (2015)CrossRefGoogle Scholar
  37. 37.
    A. Dualeh, T. Moehl, N. Tetreault, ACS Nano. 8, 362 (2014)CrossRefGoogle Scholar
  38. 38.
    T.P. Gujar, T. Unger, A. Schönleber, Phys. Chem. Chem. Phys. 20, 605 (2017)CrossRefGoogle Scholar
  39. 39.
    D. Yao, C. Zhang, N.D. Pham, J. Phys. Chem. Lett. 9, 2113 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations