Advertisement

Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor

  • Rahim Mohammad-Rezaei
  • Sahand Soroodian
  • Ghadir Esmaeili
Article
  • 8 Downloads

Abstract

pH monitoring in micro volume samples is required for environmental and clinical analysis. Low cost, miniaturized and stable metal oxide based pH sensors could be a suitable alternative to glass electrodes. In this study, a sensitive potentiometric solid state pH sensor based on manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode (MnO2/GPLE) was reported. The prepared MnO2/GPLE was carefully characterized by SEM, XRD and electrochemical techniques. To miniaturize the prepared pH sensor, a stainless steel 304 needle was used as a reference electrode. Selectivity, response time, stability and reproducibility of the miniaturized pH sensor were studied and compared with conventional glass pH electrode. According to experimental results, a near-Nernstian slope of − 57.051 mV/pH and linearity over the pH range of 1.5–12.5 were obtained for the developed MnO2/GPLE pH sensor. The prepared sensor represented high ion selectivity to mono-valence and multi-valence ions with \(- \log K_{{{\text{A}},{\text{B}}}}^{{{\text{Pot}}}}\) values around 6.49. A fast response time of 20 s in acidic medium and 60 s in alkaline medium, long-term stability and reproducibility in 2 months, the simplicity of fabrication, low cost and accuracy makes this sensor as a suitable choice for rapid pH recording in micro volume samples. The MnO2/GPLE pH sensor was successfully used for the pH monitoring of human tear, human blood, saliva, apple juice, lemon juice, milk, and vinegar samples with satisfactory results.

Notes

Acknowledgements

The authors gratefully acknowledge the Research Council of Azarbaijan Shahid Madani University for financial support.

References

  1. 1.
    M. Dole, J. Chem. Educ. 57, 134 (1980)CrossRefGoogle Scholar
  2. 2.
    C. Hegarty, S. Kirkwood, M.F. Cardosi, C.L. Lawrence, C.M. Taylor, R.B. Smith et al., Microchem. J. 139, 210 (2018)CrossRefGoogle Scholar
  3. 3.
    D.-M. Kim, S.J. Cho, C.-H. Cho, K.B. Kim, M.-Y. Kim, Y.-B. Shim, Biosens. Bioelectron. 79, 165 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Glanc-Gostkiewicz, M. Sophocleous, J.K. Atkinson, E. Garcia-Breijo, Sens. Actuators A 202, 2 (2013)CrossRefGoogle Scholar
  5. 5.
    B.C. Thompson, O. Winther-Jensen, B. Winther-Jensen, D.R. MacFarlane, Anal. Chem. 85, 3521 (2013)CrossRefGoogle Scholar
  6. 6.
    W. Lonsdale, M. Wajrak, K. Alameh, Talanta 180, 277 (2018)CrossRefGoogle Scholar
  7. 7.
    S.A.M. Marzouk, Anal. Chem. 75, 1258 (2003)CrossRefGoogle Scholar
  8. 8.
    T. Hashimoto, M. Miwa, H. Nasu, A. Ishihara, Y. Nishio, Electrochim. Acta 220, 699 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Xu, W.-D. Zhang, Electrochim. Acta 55, 2859 (2010)CrossRefGoogle Scholar
  10. 10.
    L. Qingwen, L. Guoan, S. Youqin, Anal. Chim. Acta 409, 137 (2000)CrossRefGoogle Scholar
  11. 11.
    L.A. Pocrifka, C. Gonçalves, P. Grossi, P.C. Colpa, E.C. Pereira, Sens. Actuators B 113, 1012 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Eftekhari, Sens. Actuators B 88, 234 (2003)CrossRefGoogle Scholar
  13. 13.
    R.H. Zhang, X.T. Zhang, S.M. Hu, Anal. Chem. 80, 2982 (2008)CrossRefGoogle Scholar
  14. 14.
    L. Santos, J.P. Neto, A. Crespo, D. Nunes, N. Costa, I.M. Fonseca et al., ACS Appl. Mater. Interfaces 6, 12226 (2014)CrossRefGoogle Scholar
  15. 15.
    N. Baig, T.A. Saleh, Microchim. Acta 185, 283 (2018)CrossRefGoogle Scholar
  16. 16.
    X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang et al., ACS Nano 6, 3206 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X.S. Zhao, Energy Environ. Sci. 6, 1388 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, Y. Xu, J. Zhu, L. Li, X. Du, X. Sun, Carbon 127, 392 (2018)CrossRefGoogle Scholar
  19. 19.
    R. Singh, C.C. Tripathi, Mater. Today Proc. 5, 1125 (2018)CrossRefGoogle Scholar
  20. 20.
    P.C. Shi, J.P. Guo, X. Liang, S. Cheng, H. Zheng, Y. Wang et al., Carbon 126, 507 (2018)CrossRefGoogle Scholar
  21. 21.
    H. Wang, C. Wei, K. Zhu, Y. Zhang, C. Gong, J. Guo et al., ACS Appl. Mater. Interfaces 9, 34456 (2017)CrossRefGoogle Scholar
  22. 22.
    Q. Liu, M. Cheng, Y. Long, M. Yu, T. Wang, G. Jiang, J. Chromatogr. A 1325, 1 (2014)CrossRefGoogle Scholar
  23. 23.
    K. Chen, D. Xue, S. Komarneni, J. Colloid Interface Sci. 487, 156 (2017)CrossRefGoogle Scholar
  24. 24.
    R. Mohammad-Rezaei, S. Soroodian, Sens. Lett. 15, 729 (2017)CrossRefGoogle Scholar
  25. 25.
    J.P. Wilburn, M. Ciobanu, N.I. Buss, D.R. Franceschetti, D.A. Lowy, Anal. Chim. Acta 511, 83 (2004)CrossRefGoogle Scholar
  26. 26.
    H. Razmi, R. Mohammad-Rezaei, Electrochim. Acta 56, 7220 (2011)CrossRefGoogle Scholar
  27. 27.
    N. Cherchour, C. Deslouis, B. Messaoudi, A. Pailleret, Electrochim. Acta 56, 9746 (2011)CrossRefGoogle Scholar
  28. 28.
    F.T. Johra, J.-W. Lee, W.-G. Jung, J. Ind. Eng. Chem. 20, 2883 (2014)CrossRefGoogle Scholar
  29. 29.
    T. Cetinkaya, M. Tokur, S. Ozcan, M. Uysal, H. Akbulut, Int. J. Hydrog. Energy 41, 6945 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Wang, Y. Li, Chem. Commun. 7, 764 (2002)CrossRefGoogle Scholar
  31. 31.
    H. Razmi, H. Heidari, E. Habibi, J. Solid State Electrochem. 12, 1579 (2008)CrossRefGoogle Scholar
  32. 32.
    W.E. Morf, E. Pretsch, N.F. de Rooij, J. Electroanal. Chem. 633, 137 (2009)CrossRefGoogle Scholar
  33. 33.
    P. Salvo, N. Calisi, B. Melai, B. Cortigiani, M. Mannini, A. Caneschi et al., Biosens. Bioelectron. 91, 870 (2017)CrossRefGoogle Scholar
  34. 34.
    L. Telli, B. Brahimi, A. Hammouche, Solid State Ionics 128, 255 (2000)CrossRefGoogle Scholar
  35. 35.
    J.A. Mihell, J.K. Atkinson, Sens. Actuators B 48, 505 (1998)CrossRefGoogle Scholar
  36. 36.
    Y.-C. Wu, S.-J. Wu, C.-H. Lin, Microsyst. Technol. 23, 293 (2017)CrossRefGoogle Scholar
  37. 37.
    W. Prissanaroon-Ouajai, P.J. Pigram, R. Jones, A. Sirivat, Sens. Actuators B 135, 366 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rahim Mohammad-Rezaei
    • 1
  • Sahand Soroodian
    • 1
  • Ghadir Esmaeili
    • 1
  1. 1.Electrochemistry Research Lab, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations