Double p-SiOx layers to improve the efficiency of p–i–n a-SiGe:H thin film solar cells

  • Xun Sun
  • Yijian Liu
  • Zhongli Li
  • Huey-Liang HwangEmail author


In this work, p–i–n hydrogenated amorphous silicon germanium (a-SiGe:H) thin film solar cells were fabricated by using double p-type silicon oxide (p-SiOx) layers, and the power conversion efficiency (PCE) was increased from 7.79 to 9.10%. The optoelectronic properties and functions of p-SiOx layer in a-SiGe:H cells were measured and discussed. A window layer (~ 20 nm) was deposited and characterized to determine the optimal single p-SiOx layer parameters. After that, an ultra-thin contact layer (~ 4 nm) of p-SiOx was deposited in front of the window layer. Through comparative analyses between single and double p-SiOx layers, the performance of the device has greatly improved in open-circuit voltage (Voc), fill factor (FF) and short-circuit current density (Jsc). The optimization of interface contact between top transparent conductive oxide (TCO) and p-layer effectively improves the device efficiency. Finally, a-SiGe:H solar cell with high Voc = 750 mV, FF = 68.36% and Jsc = 17.75 mA/cm2 were fabricated successfully. A high efficiency of 9.10% has been achieved by double p-SiOx layers for a-SiGe:H thin film solar cell.



This work was supported by National Natural Science Foundation of China (No. 61274051).


  1. 1.
    H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Science 355, 722 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Tan, F. Che, M. Wei, I. Saidaminov, P. Todorović, D. Broberg, G. Walters, F. Tan, T. Zhuang, B. Sun, Z. Liang, H. Yuan, E. Fron, J. Kim, Z. Yang, O. Voznyy, M. Asta, E.H. Sargen, Nat. Commun. 9, 3100 (2018)CrossRefGoogle Scholar
  3. 3.
    X. Yang, L. Hu, H. Deng, K. Qiao, C. Hu, Z. Liu, S. Yuan, J. Khan, D. Li, J. Tang, H. Song, C. Cheng, Nano-Micro Lett. 9, 24 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Que, L. Zhu, Y. Yang, J. Liu, P. Chen, W. Chen, X. Yin, W. Que, J. Power Sources 383, 42 (2018)CrossRefGoogle Scholar
  5. 5.
    N. Senthilkumar, A. Arulraj, E. Nandhakumar, M. Ganapathy, M. Vimalan, I. Vetha Potheher, J. Mater. Sci. 29, 12744 (2018)Google Scholar
  6. 6.
    H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Nano-Micro Lett. 9, 39 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Cho, D.P. Pham, J. Jung, C. Shin, J. Park, S. Kim, A.H. Tuan, H. Le, S.M. Park, Iftiquar, J. Yi, Mater. Sci. Semicond. Process 41, 480 (2016)CrossRefGoogle Scholar
  8. 8.
    Z. Li, A.J. Letha, J.-F. Wei, M.-L. Lu, Y. Liu, H.-L. Hwang, Y. Zhang, Mater. Sci. Semicond. Process 75, 51 (2018)CrossRefGoogle Scholar
  9. 9.
    G.H. Wang, C.Y. Shi, L. Zhao, R.D. Hu, L.L. Li, G. Wang, J.W. Chen, H.W. Diao, W.J. Wang, Thin Solid Films 552, 180 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Liu, L. Bai, X. Zhang, D. Zhang, C. Wei, J. Sun, Q. Huang, X. Chen, J. Ni, G. Wang, Y. Zhao, Sol. Energy Mater. Sol. C 128, 1 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Krajangsang, S. Inthisang, A. Dousse, A. Moollakorn, A. Hongsingthong, S. Kittisontirak, P. Chinnavornrungsee, A. Limmanee, J. Sritharathikhun, K. Sriprapha, Opt. Mater. 51, 245 (2016)CrossRefGoogle Scholar
  12. 12.
    D.P. Pham, S. Kim, J. Park, A.T. Le, J. Cho, J. Jung, S.M. Iftiquar, J. Yi, Mater. Sci. Semicond. Process 56, 183 (2016)CrossRefGoogle Scholar
  13. 13.
    S.A. Shahahmadi, A. Aizan Zulkefle, A.K.M. Hasan, S.M. Rana, B. Bais, M. Akhtaruzzaman, A.R.M. Alamoud, N. Amin, Mater. Sci. Semicond. Process 56, 160 (2016)CrossRefGoogle Scholar
  14. 14.
    B. Yan, L. Zhao, B. Zhao, J. Chen, G. Wang, H. Diao, Y. Mao, W. Wang, Vacuum 89, 43 (2013)CrossRefGoogle Scholar
  15. 15.
    D.P. Pham, S. Kim, J. Park, A.H.T. Le, J. Cho, J. Yi, J. Alloy. Compd. 724, 400 (2017)CrossRefGoogle Scholar
  16. 16.
    G.H. Wang, C.Y. Shi, L. Zhao, B.J. Yan, G. Wang, J.W. Chen, Z.C. Li, H.W. Diao, W.J. Wang, Thin Solid Films 534, 591 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Cho, S.M. Iftiquar, D.P. Pham, J. Jung, J. Park, S. Ahn, A.H.T. Le, J.S. Kim, J. Yi, Thin Solid Films 639, 56 (2017)CrossRefGoogle Scholar
  18. 18.
    A.H. Mahan, Y. Xu, L.M. Gedvilas, D.L. Williamson, Thin Solid Films 517, 3532 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Stutzmann, R.A. Street, C.C. Tsai, J.B. Boyce, S.E. Ready, J. Appl. Phys. 66, 569 (1989)CrossRefGoogle Scholar
  20. 20.
    A.H. Mahan, P. Menna, R. Tsu, Appl. Phys. Lett. 51, 1167 (1987)CrossRefGoogle Scholar
  21. 21.
    D.P. Pham, S. Kim, A.H. Tuan Le, J. Park, J. Yi, J. Alloy. Compd. 762, 616 (2018)CrossRefGoogle Scholar
  22. 22.
    C. Jin-Won, P. Jun Woong, L. Yu Jin, A. Seh-Won, L. Heon-Min, O.O. Park, Jpn. J. Appl. Phys. 51, 10NB16 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Lundszien, F. Finger, H. Wagner, Sol. Energy Mater. Sol. C 74, 365 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Güneş, M.E.D. Yavas, J. Klomfass, F. Finger, J. Mater. Sci. 21, 153 (2010)Google Scholar
  25. 25.
    A. Lambertz, F. Finger, B. Holländer, J.K. Rath, R.E.I. Schropp, J. Non-cryst. Solids. 358, 1962 (2012)CrossRefGoogle Scholar
  26. 26.
    J.E. Lee, J.H. Park, J.-S. Cho, J.-W. Chung, J. Song, D. Kim, J.C. Lee, Thin Solid Films 520, 6007 (2012)CrossRefGoogle Scholar
  27. 27.
    P.-K. Chang, F.-J. Tsai, C.-H. Lu, C.-H. Yeh, N.-F. Wang, M.-P. Houng, Solid State Electron. 72, 48 (2012)CrossRefGoogle Scholar
  28. 28.
    H. Tan, P. Babal, M. Zeman, A.H.M. Smets, Sol. Energy Mater. Sol. C 132, 597 (2015)CrossRefGoogle Scholar
  29. 29.
    G. Wang, L. Zhao, H. Diao, W. Wang, Vacuum 89, 40 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Ducros, H. Szambolics, F. Emieux, A. Pereira, Thin Solid Films 620, 10 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xun Sun
    • 1
  • Yijian Liu
    • 1
  • Zhongli Li
    • 1
  • Huey-Liang Hwang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronics, Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Centre for Nanotechnology, Materials Science, and MicrosystemsNational Tsing Hua UniversityHsinchuTaiwan, ROC

Personalised recommendations