Advertisement

Structural, optical and photocatlytic properties of zinc oxide nanoparticles obtained by simple plant extract mediated synthesis

  • J. Duraimurugan
  • G. Suresh Kumar
  • P. Maadeswaran
  • S. Shanavas
  • P. M. Anbarasan
  • V. Vasudevan
Article
  • 22 Downloads

Abstract

We report a facile and inexpensive method to prepare zinc oxide nanoparticles with different particle size and shape using Achyranthes aspera and Couroupita guianensis leaf extracts as the reducing agent and zinc nitrate as a precursor. The prepared zinc oxide nanoparticles were analyzed by various characterization methods and obtained results evidently revealed that crystalline parameter, purity, optical absorption, band gap, particle size and shape of the ZnO nanoparticles significantly influenced by the type of leaf extract used as reducing agent. Further, photocatlytic activity study obviously demonstrates that prepared samples exhibits superior photocatlytic activity for the degradation of methylene blue dye by creating superoxide anion radicals and OH radicals under photonic irradiation. Hence, prepared zinc oxide nanoparticles by plant extract mediated synthesis can be applied as a photocatlyst for the possible waste water treatment in textile industry.

Notes

Acknowledgements

The authors express their special thanks to STIC, Cochin, India for providing TEM and UV-DRS facilities for characterizing the samples. G. Suresh Kumar would like to express his sincere thanks to University Grant Commission, India for financial support through minor research project scheme (File No: 4–4/2015-16 (MRP/UGC SERO)). V. Vasudevan would like to acknowledge DST, India for financial support through FIST scheme (DST/SR/FST/College-235/2014).

References

  1. 1.
    C.W. Litton, D.C. Reynolds, T.C. Collins, Zinc oxide materials for electronic and optoelectronic device applications, Wiley, Weinheim, 2011CrossRefGoogle Scholar
  2. 2.
    K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016)CrossRefGoogle Scholar
  3. 3.
    C.B. Onga, L.Y. Ngb, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sust. Energy Rev. 81, 536–551 (2018)CrossRefGoogle Scholar
  4. 4.
    S.B.A. Hamid, S.J. The, C.W. Lai, Photocatalytic water oxidation on ZnO: a review. Catalysts 7, 93 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Klingshirn, ZnO: Material, physics and applications. Chem. Phys. Chem. 8, 782–803 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Kołodziejczak-Radzimska, Jesionowski, Zinc Oxide–From synthesis to application: a review. Materials. 7, 2833–2881 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Šutka, R. Käämbre, I. Pärna, M. Juhnevica, U. Maiorov, V. Joost, Kisand, Co doped ZnO nanowires as visible light photocatalysts. Solid State Sci. 56, 54–62 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Pimentel, P. Rodrigues, D. Duarte, F.M. Nunes, T. Costa, R. Monteiro, E. Martins, Fortunato, Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. J. Mater. Sci. 50, 5777–5787 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Duraimurugan, G.S. Kumar, M. Venkatesh, P. Maadeswaran, E.K. Girija, Morphology and size controlled synthesis of zinc oxide nanostructures and their optical properties. J. Mater. Sci. 29, 9339–9346 (2018)Google Scholar
  10. 10.
    H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 43, 907–914 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Çolak, E. Karaköse, Structural, electrical and optical properties of green synthesized ZnO nanoparticles using aqueous extract of thyme (Thymus vulgaris). J. Mater. Sci. 28, 12184 – 12190 (2017)Google Scholar
  12. 12.
    F. Davar, A. Majedi, A. Mirzaei, Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. J. Am. Ceram. Soc. 98, 1739–1746 (2015)CrossRefGoogle Scholar
  13. 13.
    V.S. Saraswathi, J. Tatsugi, P.-K. Shin, K. Santhakumar, Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. speciosa. J. Photochem. Photobiol. B 167, 89–98 (2017)CrossRefGoogle Scholar
  14. 14.
    O.J. Nava, C.A. Soto-Robles, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas, P.A. Luque, Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct. 1147, 1–6 (2017)CrossRefGoogle Scholar
  15. 15.
    O.J. Nava, P.A. Luque, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, M.L. Mota-González, A. Olivas, Influence of Camellia sinensis extract on zinc oxide nanoparticle green synthesis. J. Mol. Struct. 1134, 121–125 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Elumalai, P.K. Kaleena, K. Ashok, A. Suresh, M. Hemavathi, Green synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Eng. Agric. Environ. Food. 9, 1–8 (2016)CrossRefGoogle Scholar
  17. 17.
    V. Gude, K. Upadhyaya, M.N.V. Prasad, N.V.S. Rao, Green synthesis of gold and silver nanoparticles using Achyranthes Aspera L. leaf extract. Adv. Sci. Eng. Med. 5, 223–228 (2013)CrossRefGoogle Scholar
  18. 18.
    G. Sathishkumar, C. Rajkuberan, K. Manikandan, S. Prabukumar, J. DanielJohn, S. Sivaramakrishnan, Facile biosynthesis of antimicrobial zinc oxide (ZnO) nanoflakes using leaf extract of Couroupita guianensis Aubl.. Mater. Lett. 188, 383–386 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Shanavas, A. Priyadharsan, V. Vasanthakumar, A. Arunkumar, P.M. Anbarasan, S. Bharathkumar, Mechanistic investigation of visible light driven novel La2CuO4/CeO2/rGO ternary hybrid nanocomposites for enhanced photocatalytic performance and antibacterial activity. J. Photochem. Photobiol A: Chem. 340, 96–108 (2017)CrossRefGoogle Scholar
  20. 20.
    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)CrossRefGoogle Scholar
  21. 21.
    G.S. Kumar, S. Rajendran, S. Karthi, R. Govindan, E.K. Girija, G. Karunakaran, D. Kuznetsov, Green synthesis and antibacterial activity of hydroxyapatite nanorods for biomedical applications. MRS Commun. 7, 183–188 (2017)CrossRefGoogle Scholar
  22. 22.
    T. Prakash, G. Neri, A. Bonavita, E.R. Kumar, K. Gnanamoorthi, Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method. J. Mater. Sci. 26, 4913–4921 (2015)Google Scholar
  23. 23.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic and Bioinorganic Chemistry (Wiley, New York, 2009)Google Scholar
  24. 24.
    X. Zhao, L. Qi, Rapid microwave-assisted synthesis of hierarchical ZnO hollow spheres and their application in Cr(VI) removal. Nanotechnology. 23, 235604 (2012)CrossRefGoogle Scholar
  25. 25.
    R. Venkateasan, V. Prabakaran, Sujatha, Phytoextract-mediated synthesis of zinc oxide nanoparticles using aqueous leaves extract of Ipomoea pes-caprae (L).R.br revealing its biological properties and photocatalytic activity. Nanotechnol. Environ. Eng. 2, 8 (2017)CrossRefGoogle Scholar
  26. 26.
    V. Karunakaran, P. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 13, 923–928 (2011)CrossRefGoogle Scholar
  27. 27.
    K. Koci, L. Obalova, L. Matejova, D. Placha, Z. Lacny, J. Jirkovsky, O. Solcova, Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B Environ. 89, 494–502 (2009)CrossRefGoogle Scholar
  28. 28.
    M.F. Sanad, A.E. Shalan, S.M. Bazid, S.M. Abdelbasir, Pollutant degradation of different organic dyes using the photocatalytic activity of ZnO@ZnS nanocomposite materials. J. Environ. Chem. Eng. 6, 3981–3990 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater. Sci. Semicond. Process. 39, 621–628 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method, Spectrochim. Acta A 143, 304–308Google Scholar
  31. 31.
    T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, J. Yang, F. Peng, Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbiacitriodora leaf extract and their photocatalytic activity. Green Chem. Lett. Rev. 8, 59–63 (2015)CrossRefGoogle Scholar
  33. 33.
    S.S.M. Hassan, W.I.M.E. Azab, H.R. Ali, M.S.M. Mansour, Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv. Nat. Sci. 6, 045012 (2015)Google Scholar
  34. 34.
    M. Stan, A. Popa, D. Toloman, A. Dehelean, I. Lung, G. Katona, Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater. Sci. Semicond. Process. 39, 23–29 (2015)CrossRefGoogle Scholar
  35. 35.
    M.N.C. Vidya, M.A.L.A. Prabha, Raj, Green mediated synthesis of zinc oxide nanoparticles for the photocatalytic degradation of Rose Bengal dye. Environ. Nanotechnol. Monit. Manag. 6, 134–138 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Fowsiya, G. Madhumitha, N.A. Al-Dhabi, M.V. Arasu, Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J. Photochem. Photobiol. B 162, 395–401 (2016)CrossRefGoogle Scholar
  37. 37.
    T. Karnan, S.A.S. Selvakumar, Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J. Mol. Struct. 1125, 358–365 (2016)CrossRefGoogle Scholar
  38. 38.
    S.T. Fardood, A. Ramazani, S. Moradi, P.A. Asiabi, Green synthesis of zinc oxide nanoparticles using Arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. J. Mater. Sci. 28, 13596–13601 (2017)Google Scholar
  39. 39.
    V.V. Gawade, N.L. Gavade, H.M. Shinde, S.B. Babar, A.N. Kadam, K.M. Garadkar, Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J. Mater. Sci. 28, 14033–14039 (2017)Google Scholar
  40. 40.
    M. Zare, K. Namratha, M.S. Thakur, K. Byrappa, Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus Vulgaris leaf extract. Mater. Res. Bull. 109, 49–59 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Duraimurugan
    • 1
    • 2
  • G. Suresh Kumar
    • 3
  • P. Maadeswaran
    • 1
    • 4
  • S. Shanavas
    • 5
  • P. M. Anbarasan
    • 5
  • V. Vasudevan
    • 6
  1. 1.Department of Energy StudiesPeriyar UniversitySalemIndia
  2. 2.Department of PhysicsLaxminarayana Arts and Science College for WomenDharmapuriIndia
  3. 3.Department of PhysicsK.S. Rangasamy College of Arts and Science (Autonomous)TiruchengodeIndia
  4. 4.Center for Instrumentation and Maintenance FacilityPeriyar UniversitySalemIndia
  5. 5.Department of PhysicsPeriyar UniversitySalemIndia
  6. 6.Department of PhysicsK.S. Rangasamy College of Technology (Autonomous)TiruchengodeIndia

Personalised recommendations