Photoelectrochemical activity of Ag loaded TiO2 nanotube arrays produced by sequential chemical bath deposition for water splitting

  • Kyana Mohammadi
  • Ahmad MoshaiiEmail author
  • Maryam Azimzadehirani
  • Zahra-Sadat Pourbakhsh


We report on remarkable improvement of photoelectrochemical (PEC) properties of TiO2 nanotubes by loading of Ag nanoparticles into them. The silver nanoparticles were loaded on the nanotubes by sequential chemical bath deposition (S-CBD) with different number of deposition cycles. Various characterizations including field emission scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis (EDX), all confirm that the silver nanoparticles were deposited inside and outside of TiO2 nanotubes. In addition, the PEC properties of the samples were investigated using linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The PEC analyses clearly show that the photo-electrochemical activity of the Ag-loaded samples are considerably higher than the bare TiO2 nanotubes (about 3 times). This mostly originates from the improvement of light absorption due to the plasmonic effects in addition to better separation and transport of electron–hole pairs in the Ag-loaded samples relative to the bare TiO2 nanotubes. All results indicate that the maximum efficiency were obtained for the 8-cycle of S-CBD Ag-loading on the bare TiO2 nanotubes.



We acknowledge Tarbiat Modares University for funding support of this work.


  1. 1.
    T.N. Veziroğlu, S. Şahi, Energy Convers. Manage. (2007) Google Scholar
  2. 2.
    S. Zhang, B. Peng, S. Yang, H. Wang, H. Yu, Y. Fang, F. Peng, Int. J. Hydrogen Energy (2015) Google Scholar
  3. 3.
    H.M. Chen, C.K. Chen, C.J. Chen, L.C. Cheng, P.C. Wu, B.H. Cheng, Y.Z. Ho et al. ACS Nano (2012) Google Scholar
  4. 4.
    P. Kumar, P. Sharma, R. Shrivastav, S. Dass, V.R. Satsangi, Int. J. Hydrogen Energy (2011) Google Scholar
  5. 5.
    Y. Sun, C.J. Murphy, K.R. Reyes-Gi, E.A. Reyes-Garcia, J.M. Thornton, N.A. Morris, D. Raftery, Int. J. Hydrogen Energy (2009) Google Scholar
  6. 6.
    J. Li, N. Wu, Catal. Sci. Technol. (2014) Google Scholar
  7. 7.
    A. Fujishima, K. Honda, Nature (1972) Google Scholar
  8. 8.
    J. Qiu, X. Li, X. Gao, X. Gan, B. Weng, L. Li, Z. Yuan, Z. Shi, Y.H. Hwang, J. Mater. Chem. (2012) Google Scholar
  9. 9.
    Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, Appl. Catal. A (2014) Google Scholar
  10. 10.
    N. Baram, Y. Ein-Eli, J. Phys. Chem. C (2010) Google Scholar
  11. 11.
    L. Roman, R.D. Trusca, M.L. Soare, C. Fratila, E. Krasicka-Cydzik, M.S. Stan, A. Dinischiotu, Mater. Sci. Eng. (2014) Google Scholar
  12. 12.
    S. Preda, V.S. Teodorescu, A.M. Musuc, C. Andronescu, M. Zaharescu, J. Mater. Res. (2013) Google Scholar
  13. 13.
    K. Xie, L. Sun, C. Wang, Y. Lai, M. Wang, H. Chen, C. Lin, Electrochim. Acta (2010) Google Scholar
  14. 14.
    S. Liu, E. Guo, L. Yin, J Mater Chem. (2012) Google Scholar
  15. 15.
    A.L. Linsebigler, L. Amy, G. Lu, J.R. Yates Jr., Chem. Rev. (1995) Google Scholar
  16. 16.
    N. Lu, X. Quan, J. Li, S. Chen, H.T. Yu, G.H. Chen, J. Phys. Chem. C (2007) Google Scholar
  17. 17.
    J.H. Park, S. Kim, A.J. Bard, Nano Lett. (2006) Google Scholar
  18. 18.
    Y. Huo, Y. Jin, J. Zhu, H. Li, Appl. Catal. B (2009) Google Scholar
  19. 19.
    L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Sol Energy Mater. Sol Cells (2009) Google Scholar
  20. 20.
    H. Liu, G. Liu, Q. Zhou, J. Solid State Chem. (2009) Google Scholar
  21. 21.
    T.S. Kang, A.P. Smith, B.E. Taylor, M.F. Durstock, Nano Lett. (2009) Google Scholar
  22. 22.
    Z. Liu, V. Subramania, M. Misra, J. Phys. Chem. C (2009) Google Scholar
  23. 23.
    M. Sadeghi, W. Liu, T.G. Zhang, P. Stavropoulos, B. Levy, J. Phys. Chem. (1996) Google Scholar
  24. 24.
    Y. Bessekhouad, D. Robert, J.V. Weber, Catal. Today (2005) Google Scholar
  25. 25.
    Y. Xie, G. Ali, S.H. Yoo, S.O. Cho, ACS Appl. Mater. Interfaces (2010) Google Scholar
  26. 26.
    L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, Environ. Sci. Technol. (2010) Google Scholar
  27. 27.
    Q. Wang, X. Yang, D. Liu, J. Zhao, J. Alloys Compd. (2012) Google Scholar
  28. 28.
    H.J. Lin, T.S. Yang, C.H. His, M.C. Wang, K.C. Lee, Ceram. Int. (2014) Google Scholar
  29. 29.
    S. Lin, D. Li, J. Wu, X. Li, S.A. Akbar, Sens. Actuators B (2011) Google Scholar
  30. 30.
    Y.H. Lin, T.K. Tseng, H. Chu, Appl. Catal. A (2014) Google Scholar
  31. 31.
    K. Chen, X. Feng, R. Hu, Y. Li, K. Xie, Y. Li, H. Gu, J. Alloys Compd. (2013) Google Scholar
  32. 32.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, 1st edn. (Springer, Berlin Heidelberg, 2013), pp. 13–201Google Scholar
  33. 33.
    K. Matsubara, T. Tatsuma, Adv. Mater. (2007) Google Scholar
  34. 34.
    H. Zhang, G. Wang, D. Chen, X. Lv, J. Li, Chem. Mater. (2008) Google Scholar
  35. 35.
    I. Paramasivam, J.M. Macak, A. Ghicov, P. Schmuki, Chem. Phys. Lett. (2007) Google Scholar
  36. 36.
    G. Guo, B. Yu, P. Yu, X. Chen, Talanta (2009) Google Scholar
  37. 37.
    X. Liu, Z. Liu, J. Lu, X. Wu, B. Xu, W. Chu, Appl. Surf. Sci. (2014) Google Scholar
  38. 38.
    L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, C. Lin, J. Hazard. Mater. (2009) Google Scholar
  39. 39.
    J. Jiao, J. Tang, W. Gao, D. Kuang, Y. Tong, L. Chen, J. Power Sources (2015) Google Scholar
  40. 40.
    E. Thimsen, F.L. Formal, M. Grätzel, S.C. Warren, Nano Lett. (2010) Google Scholar
  41. 41.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, 1st edn. (Wiley, Weinheim, 2008), pp. 3–11Google Scholar
  42. 42.
    C.F. Bohren, D.R. Huffman, Chem. Rev. (2011) Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsTarbiat Modares UniversityTehranIran
  2. 2.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations