Advertisement

Conjunction of macroporosity and NH4F treatment for improved performance of TiO2 photoanode in quantum-dot sensitized solar cells

  • Muhammad Abdul Basit
  • Muhammad Muteeb Butt
  • Madiha Nazir
  • Muhammad Naeem Ashiq
Article
  • 53 Downloads

Abstract

Macropores (MPs) are generally used to enhance the scattering of light inside mesoporous TiO2 photoanodes used for dye sensitized solar cells (DSSCs) as well as quantum-dot sensitized solar cells (QDSSCs). Despite of an increase in the scattering characteristics of TiO2 photoanode, the incorporation of MPs beyond an optimum level results a decrease in the performance of DSSCs or QDSSCs which is credited to lowering of dye or QD loading inside TiO2 photoanode. In this attempt, we have concurrently employed the scattering proficiency of higher incorporation of MPs ( ~ 30 wt%) and an apposite NH4F-treatment assuring a significant increase in QD loading, resulting in a notable improvement in photovoltaic performance of PbS-based QDSSCs. Nearly 18% increase in power conversion efficiency of QDSSCs was obtained which was attributed to increase in photocurrent density (JSC) from 13.04 to 15.18 mA/cm2.

Notes

Acknowledgements

This work was supported by Higher Education Commission (HEC), Pakistan and funded through Start-up Research Grant Program (Grant No. SRGP#1229) by HEC.

Supplementary material

10854_2018_458_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2216 KB)

References

  1. 1.
    D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells 155, 294–322 (2016)CrossRefGoogle Scholar
  2. 2.
    P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112(48), 18737–18753 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, C. Lin, Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustain. Energy Fuels 1(6), 1217–1231 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Gimenez, I. Mora-Sero, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gomez, L.J. Diguna, Q. Shen, T. Toyoda, J. Bisquert, Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 20(29), 295204 (2009)CrossRefGoogle Scholar
  5. 5.
    H.K. Jun, M.A. Careem, A.K. Arof, Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew. Sustain. Energy Rev. 22, 148–167 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C 4(2), 145–153 (2003)CrossRefGoogle Scholar
  7. 7.
    H. Choi, C. Nahm, J. Kim, C. Kim, S. Kang, T. Hwang, B. Park, Review paper: toward highly efficient quantum-dot- and dye-sensitized solar cells. Curr. Appl. Phys. 13, S2–S13 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Wang, G. Jiang, J. Yu, W. Wang, Z. Pan, N. Nakazawa, Q. Shen, X. Zhong, High efficiency quantum dot sensitized solar cells based on direct adsorption of quantum dots on photoanodes. ACS Appl. Mater. Interfaces 9(27), 22549–22559 (2017)CrossRefGoogle Scholar
  9. 9.
    M.A. Basit, M.A. Abbas, E.S. Jung, Y.M. Park, J.H. Bang, T.J. Park, Strategic PbS quantum dot-based multilayered photoanodes for high efficiency quantum dot-sensitized solar cells. Electrochim. Acta 211, 644–651 (2016)CrossRefGoogle Scholar
  10. 10.
    C. Chen, M. Ye, M. Lv, C. Gong, W. Guo, C. Lin, Ultralong rutile TiO2 nanorod arrays with large surface area for cds/cdse quantum dot-sensitized solar cells. Electrochim. Acta 121, 175–182 (2014)CrossRefGoogle Scholar
  11. 11.
    B.B. Jin, Y.F. Wang, J.H. Zeng, Performance enhancement in titania based quantum dot sensitized solar cells through incorporation of disc shaped ZnO nanoparticles into photoanode. Chem. Phys. Lett. 660, 76–80 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Tian, L. Lv, X. Wang, C. Fei, X. Liu, Z. Zhao, Y. Wang, G. Cao, Microsphere light-scattering layer assembled by zno nanosheets for the construction of high efficiency (> 5%) quantum dots sensitized solar cells. J. Phys. Chem. C 118(30), 16611–16617 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Huang, L. Pan, C.K. Lim, H. Gong, J. Guo, M.S. Tse, O.K. Tan, Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Small 9(18), 3153–3160 (2013)CrossRefGoogle Scholar
  14. 14.
    M.A. Basit, M.A. Abbas, E.S. Jung, J.H. Bang, T.J. Park, Improved light absorbance and quantum-dot loading by macroporous TiO2 photoanode for PbS quantum-dot-sensitized solar cells. Mater. Chem. Phys. 196, 170–176 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Lin, Y. Lin, J. Wu, Y. Tu, X. Zhang, B. Fang, Improved performance of quantum dots sensitized solar cells using ZnO hierarchical spheres as photoanodes. Ceram. Int. 41(10), 14501–14507 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Wu, J. He, S. Zhang, K. Cao, Z. Gao, F. Xu, K. Jiang, Multi-dimensional titanium dioxide with desirable structural qualities for enhanced performance in quantum-dot sensitized solar cells. J. Power Sources 282, 202–210 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Yang, A.S. Nair, S. Ramakrishna, Conversion efficiency enhancement of CdS quantum dot-sensitized electrospun nanostructured TiO2 solar cells by organic dipole treatment. Mater. Lett. 116, 345–348 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Du, X. He, L. Zhao, H. Chen, W. Li, W. Fang, W. Zhang, J. Wang, H. Chen, TiO2 hierarchical porous film constructed by ultrastable foams as photoanode for quantum dot-sensitized solar cells. J. Power Sources 332, 1–7 (2016)CrossRefGoogle Scholar
  19. 19.
    T.R. Chetia, M.S. Ansari, M. Qureshi, Ethyl cellulose and cetrimonium bromide assisted synthesis of mesoporous, hexagon shaped ZnO nanodisks with exposed +/-{0001} polar facets for enhanced photovoltaic performance in quantum dot sensitized solar cells. ACS Appl. Mater. Interfaces 7(24), 13266–13279 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Son, S.H. Hwang, C. Kim, J.Y. Yun, J. Jang, Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5(11), 4815–4820 (2013)CrossRefGoogle Scholar
  21. 21.
    W. Yang, X. Chen, L. Liu, Q. Yang, P. Yang, Light-scattering photoanodes from double-layered mesoporous TiO2 nanoparticles/SiO2 nanospheres for dye-sensitized solar cells. Electrochim. Acta 213, 1–7 (2016)CrossRefGoogle Scholar
  22. 22.
    J.R. Rangel-Mendez, J. Matos, L.F. Cházaro-Ruiz, A.C. González-Castillo, G. Barrios-Yáñez, Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells. Appl. Surf. Sci. 434, 744–755 (2018)CrossRefGoogle Scholar
  23. 23.
    L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, H. Lu, P. Wang, Double light-scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: Improved efficiency in dye-sensitized solar cells. J. Alloys Compd. 575, 168–173 (2013)CrossRefGoogle Scholar
  24. 24.
    Q. Zhang, D. Myers, J. Lan, S.A. Jenekhe, G. Cao, Applications of light scattering in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012)CrossRefGoogle Scholar
  25. 25.
    D.-W. Liu, I.-C. Cheng, J.Z. Chen, H.-W. Chen, K.-C. Ho, C.-C. Chiang, Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes. Opt. Expr. 20(102), A168–A176 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Zhang, Z. Chen, Z. Wang, W. Zhang, N. Ming, Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Mater. Lett. 57(28), 4466–4470 (2003)CrossRefGoogle Scholar
  27. 27.
    H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D.-R. Jung, B. Park, The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr. Appl. Phys. 12(3), 737–741 (2012)CrossRefGoogle Scholar
  28. 28.
    M.A. Abbas, M.A. Basit, T.J. Park, J.H. Bang, Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Phys. Chem. Chem. Phys. 17(15), 9752–9760 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt. 15(7), 603–612 (2007)CrossRefGoogle Scholar
  30. 30.
    M. Samadpour, P.P. Boix, S. Giménez, A. Iraji Zad, N. Taghavinia, I. Mora-Seró, J. Bisquert, Fluorine treatment of TiO2 for enhancing quantum dot sensitized solar cell performance. J. Phys. Chem. C 115(29), 14400–14407 (2011)CrossRefGoogle Scholar
  31. 31.
    M.A. Basit, M.A. Abbas, J.H. Bang, T.J. Park, Efficacy of In2S3 interfacial recombination barrier layer in PbS quantum-dot-sensitized solar cells. J. Alloys Compd. 653, 228–233 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Hachiya, Q. Shen, T. Toyoda, Effect of ZnS coatings on the enhancement of the photovoltaic properties of PbS quantum dot-sensitized solar cells. J. Appl. Phys. 111(10), 104315 (2012)CrossRefGoogle Scholar
  33. 33.
    S.D. Sung, I. Lim, P. Kang, C. Lee, W.I. Lee, Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte. Chem. Commun. 49(54), 6054–6056 (2013)CrossRefGoogle Scholar
  34. 34.
    M.A. Abbas, J.H. Bang, Rising again: opportunities and challenges for platinum-free electrocatalysts. Chem. Mater. 27(21), 7218–7235 (2015)CrossRefGoogle Scholar
  35. 35.
    C.S. Kim, S.H. Choi, J.H. Bang, New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells: composition-dependent electrocatalytic activity and stability. ACS Appl. Mater. Interfaces 6(24), 22078–22087 (2014)CrossRefGoogle Scholar
  36. 36.
    J.R. Wünsch, Polystyrene: Synthesis, Production and Applications (iSmithers Rapra Publishing, Shropshire, 2000)Google Scholar
  37. 37.
    G. Wypych, Handbook of Polymers (Elsevier, Amsterdam, 2016)Google Scholar
  38. 38.
    S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells. Chem Commun. (15):2011–2013 (2005)Google Scholar
  39. 39.
    A. Khalilzadeh, S. Fatemi, Spouted bed reactor for VOC removal by modified nano-TiO2 photocatalytic particles. Chem. Eng. Res. Des. 115, 241–250 (2016)CrossRefGoogle Scholar
  40. 40.
    L. Ignat’eva, S. Polishchuk, T. Antokhina, V. Buznik, IR spectroscopic study of the structure of glasses based on titanium oxyfluoride. Glass Phys. Chem 30(2), 139–141 (2004)CrossRefGoogle Scholar
  41. 41.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Handbook of Vibrational Spectroscopy (Wiley, New York, 2006)Google Scholar
  42. 42.
    Y.-C. Hsu, T.C.C. Wu, I.C. Cheng, J.-Z. Chen, M.-R. Yang, Dye-sensitized solar cell with photoanode made with polystyrene-ball-embedded TiO2Pastes. Jpn. J. Appl. Phys. 50(6), 06GF09 (2011)CrossRefGoogle Scholar
  43. 43.
    T.C. Li, F. Fabregat-Santiago, O.K. Farha, A.M. Spokoyny, S.R. Raga, J. Bisquert, C.A. Mirkin, T.J. Marks, J.T. Hupp, SiO2 aerogel templated, porous TiO2 photoanodes for enhanced performance in dye-sensitized solar cells containing a Ni (III)/(IV) Bis (dicarbollide) shuttle. J. Phys. Chem. C 115(22), 11257–11264 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringInstitute of Space TechnologyIslamabadPakistan
  2. 2.Institute of Chemical SciencesBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations