Advertisement

Initial stage of isothermal wetting of bulk Cu6Sn5, Cu3Sn and Cu substrates by liquid Sn

  • O. Y. Liashenko
  • F. HodajEmail author
Article
  • 20 Downloads

Abstract

For the first time the initial stage (10−3 to 10−2 s) of isothermal wetting of bulk Cu6Sn5, Cu3Sn and Cu substrates by liquid Sn are studied using a dispensed drop set-up under high vacuum at 300 and 390 °C combined with high-speed video recording. Specific non-reactive wetting experiments of Cu6Sn5 by saturated Sn-7.8 wt%Cu liquid alloy are also performed in order to distinguish the reactive and non-reactive spreading stages. Selected samples are characterized by scanning electron microscopy in order to observe the reactive (or non-reactive) interfaces as well as the drop/substrate configuration at the zone close to the triple line. The physical meaning of observed contact angles is discussed based on these experimental results. The equilibrium contact angle of liquid Sn on the unreacted Cu substrate is found to be significantly higher than those on Cu6Sn5 and Cu3Sn substrates. A mechanism of reactive spreading in the liquid Sn/Cu system is proposed.

Notes

Acknowledgements

One of authors (O. Y. Liashenko) gratefully acknowledge financial support from the Ministry of Education and Science of Ukraine (state registration number: 0117U000577).

References

  1. 1.
    K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability (Springer, New York, 2007)Google Scholar
  2. 2.
    N. Eustathopoulos, B. Drevet, N. Nicholas, Wettability at High Temperatures, vol. 3, (Pergamon Materials Series, Cambridge, 1999)Google Scholar
  3. 3.
    J. Wu, S.-B. Xue, J.-W. Wang, S. Liu, Y.-L. Han, L.-J. Wang, J. Mater. Sci. Mater. Electron. 27, 12729–12763 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Bertheau, F. Hodaj, N. Hotellier, J. Charbonnier, Intermetallics 51, 37–41 (2014)CrossRefGoogle Scholar
  5. 5.
    D. Taneja, M. Volpert, F. Hodaj, J. Mater Sci. Mater. Electron. 28, 18366–18378 (2017)CrossRefGoogle Scholar
  6. 6.
    O.Yu. Liashenko, A. Gusak, F. Hodaj, J. Mater. Sci. Mater. Electron. 25, 4664–4672 (2014)CrossRefGoogle Scholar
  7. 7.
    O.Y. Liashenko, F. Hodaj, Acta Mater. 99, 106–118 (2015)CrossRefGoogle Scholar
  8. 8.
    O.Y. Liashenko, S. Lay, F. Hodaj, Acta Mater. 117, 216–227 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Sobczak, M. Singh, R. Asthana, Curr. Opin. Solid State Mater. Sci. 9, 241–253 (2005)CrossRefGoogle Scholar
  10. 10.
    N. Eustathopoulos, Curr. Opin. Solid State Mater. Sci. 9, 152–160 (2005)CrossRefGoogle Scholar
  11. 11.
    E. Saiz, A.P. Tomsia, Curr. Opin. Solid State Mater. Sci. 9, 167–173 (2005)CrossRefGoogle Scholar
  12. 12.
    E. Saiz, A.P. Tomsia, N. Rauch, C. Scheu, M. Ruehle, M. Benhassine, D. Seveno, J. de Coninck, S. Lopez-Esteban, Phys. Rev. E 76, 041602 (2007)CrossRefGoogle Scholar
  13. 13.
    E. Saiz, M. Benhassine, J. De Coninck, A.P. Tomsia, Scr. Mater. 62, 934–938 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Yin, A. Chauhan, T.J. Singler, Mater. Sci. Eng. A 495, 80–89 (2008)CrossRefGoogle Scholar
  15. 15.
    L. Yin, B.T. Murray, S. Su, Y. Sun, Y. Efraim, H. Taitelbaum, T.J. Singler, J. Phys. Condens. Matter 21, 464130 (2009)CrossRefGoogle Scholar
  16. 16.
    J.A. Warren, W.J. Boettinger, A.R. Roosen, Acta Mater. 46, 3247–3264 (1998)CrossRefGoogle Scholar
  17. 17.
    P. Protsenko, J.P. Garandet, R. Voytovych, N. Eustathopoulos, Acta Mater. 58, 6565–6574 (2010)CrossRefGoogle Scholar
  18. 18.
    T. Matsumoto, K. Nogi, Annu. Rev. Mater. Res. 38, 251–273 (2008)CrossRefGoogle Scholar
  19. 19.
    W.J. Boettinger, C.A. Handwerker, L.C. Smith, in The Metal Science of Joining, ed. by M.J. Cieslak, J.H. Perepezko, S. Kang, M.J. Glicksman (The Minerals, Metals and Materials Society, Warrendale, 1992)Google Scholar
  20. 20.
    N. Sobczak, A. Kudyba, R. Nowak, W. Radziwill, K. Pietrzak, Pure Appl. Chem. 79, 1755–1769 (2007)CrossRefGoogle Scholar
  21. 21.
    P. Villars, K. Cenzual, Pearsons’s Crystal Data - Crystal Structure Data Base for Inorganic Compounds (On CD-ROM), (ASM International, Materials Park, 2012–2013)Google Scholar
  22. 22.
    K. Nogita, D. Mu, S.D. McDonald, J. Read, Y.Q. Wu, Intermetallics 26, 78–85 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Knoedler, Metall 20, 823–829 (1966)Google Scholar
  24. 24.
    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)CrossRefGoogle Scholar
  25. 25.
    T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park, 1990)Google Scholar
  26. 26.
    S. Bader, W. Gust, H. Hieber, Acta Metall. Mater. 43, 329–337 (1995)Google Scholar
  27. 27.
    J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 59, 1198–1211 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Mattafirri, E. Barzi, F. Fineschi, J.-M. Rey, IEEE Trans. Appl. Supercond. 13, 3418–3421 (2003)CrossRefGoogle Scholar
  29. 29.
    T.H. Chuang, H.M. Wu, M.D. Cheng, S.Y. Chang, S.F. Yen, J. Electron. Mater. 33, 22–27 (2004)CrossRefGoogle Scholar
  30. 30.
    D. Attinger, Z. Zhao, D. Poulikakos, J. Heat Transf. 122, 544–556 (2000)CrossRefGoogle Scholar
  31. 31.
    S.D. Aziz, S. Chandra, Int. J. Heat Mass Transf. 43, 2841–2857 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS, Grenoble INP, SIMAPUniversité Grenoble AlpesGrenobleFrance
  2. 2.Cherkasy National UniversityCherkasyUkraine

Personalised recommendations