Advertisement

Study of copper bismuth sulfide thin films for the photovoltaic application

  • Yanbo Yang
  • Xiaolu Xiong
  • Hongxing Yin
  • Ming Zhao
  • Junfeng HanEmail author
Article
  • 55 Downloads

Abstract

Due to a suitable band gap and high optical absorption in the visible spectrum, copper bismuth sulfide (CBS) has raised concern as one of the potential photovoltaic absorber materials. In this work, CBS thin films were prepared by co-evaporating metal bismuth and CuS materials in a vacuum system and following by an annealing process. Morphologies, compositions, structures, electrical and optical properties of CBS thin films were all investigated. Finally, a completed photovoltaic device based on CdS/CBS heterojunction was fabricated and an efficiency of 1.7% was obtained in the current states. All of those analyses indicated CBS thin films a kind of suitable absorber material for the photovoltaic application.

Notes

Acknowledgements

The authors acknowledge the financial support of National Nature Science Foundation of China (51502015) and Beijing Institute of Technology Research Fund Program.

Supplementary material

10854_2018_455_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2855 KB)

References

  1. 1.
    A. Jager-Waldau, Sol. Energy Mater. Sol. Cells 95, 1509–1517 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Li, Z. Peng, J. Zheng, F. Pan, J. Mater. Chem. A 5, 7118–7124 (2017)CrossRefGoogle Scholar
  3. 3.
    C.S. Tao, J. Jiang, M. Tao, Sol. Energy Mater. Sol. Cells 95(12), 3176–3180 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Siebentritt, S. Schorr, Prog. Photovolt. Res. Appl. 20(5), 512–519 (2012)CrossRefGoogle Scholar
  5. 5.
    W. Feng, J. Han, J. Ge, J. Electron. Mater. 46, 288–295 (2017)CrossRefGoogle Scholar
  6. 6.
    J.A. Marquez Prieto, S. Levcenko, J. Just, J. Alloys Compd. 689, 182–186 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Muthukannan, J. Henry, K. Mohanraj, G. Sivakumar, S. Thanikaikarasan, J. Mater. Sci. Mater. Electron. 27, 9947–9952 (2016)CrossRefGoogle Scholar
  8. 8.
    X. Liu, J. Chen, M. Luo, D. Niu, J. Tang, ACS Appl. Mater. Interfaces 6, 10687–10695 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Banu, S.J. Ahn, Y.J. Eo, J. Gwak, A. Cho, Sol. Energy 145, 33–41 (2017)CrossRefGoogle Scholar
  10. 10.
    N.C. Miller, M. Bernechea, APL Mater. 6, 084503 (2018)CrossRefGoogle Scholar
  11. 11.
    L. Yu, R.S. Kokenyesi, D.A. Keszler, A. Zunger, Adv. Energy Mater. 3(1), 43–48 (2013)CrossRefGoogle Scholar
  12. 12.
    D.J. Temple, A.B. Kehoe, J.P. Allen, G.W. Watson, D.O. Scanlon, J. Phys. Chem. C 116(13), 7334–7340 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Gassoumi, M. Musa Saad, S. Alfaify, T.B. Nasr, N. Bouarissa, J. Alloys Compd. 725, 181–189 (2017)CrossRefGoogle Scholar
  14. 14.
    J.T. Dufton, A. Walsh, P.M. Panchmatia, L.M. Peter, D. Colombara, M.S. Islam, Phys. Chem. Chem. Phys. 14(20), 7229–7233 (2012)CrossRefGoogle Scholar
  15. 15.
    P.S. Sonawane, P.A. Wani, L.A. Patil, T. Seth, Mater. Chem. Phys. 84, 221–227 (2004)CrossRefGoogle Scholar
  16. 16.
    N.J. Gerein, J.A. Haber, Chem. Mater. 18, 6297–6302 (2006)CrossRefGoogle Scholar
  17. 17.
    B. Murali, M. Madhuri, S.B. Krupanidhi, J. Appl. Phys. 115, 173109 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Colombara, L.M. Peter, K. Hutchings, K.D. Rogers, S. Schafer, J.T.R. Dufton, M.S. Islam, Thin Solid Films 520, 5165–5171 (2012)CrossRefGoogle Scholar
  19. 19.
    N. Pai, J. Lu, D.C. Senevirathna, A.S.R. Chesman, T. Gengenbach, M. Chatti, J. Mater. Chem. C 6, 2483–2494 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Han, C. Liao, T. Jiang, H. Xie, K. Zhao, M.-P. Besland, J. Cryst. Growth 382, 56–56 (2013)CrossRefGoogle Scholar
  21. 21.
    L.Q. Ouyang, M. Zhao, D.M. Zhuang, J.F. Han, Z.D. Gao, L. Guo, M.J. Cao, Sol. Energy 118, 375–383 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Wubet, D.-H. Kuo, H. Abdullah, J. Solid State Chem. 230, 237–242 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Hernadez-Mota, M. Espindola-Rodriguez, Y. Sanchez, I. Lopez, Y. Pena, E. Saucedo, Mater. Sci. Semicond. Proc. 87, 37–43 (2018)Google Scholar
  24. 24.
    C.H. Wu, P.W. Wu, R.C. Hsiao, C.Y. Hsu, J. Mater. Sci. Mater. Electron. 29, 11429–11438 (2018)CrossRefGoogle Scholar
  25. 25.
    J. Han, K. Zhao, A. Klein, W. Jaegermann, Sol. Energy Mater. Sol. Cell 95, 816–820 (2011)CrossRefGoogle Scholar
  26. 26.
    S.S. Hegedus, W.N. Shafarman, Prog. Photovolt. Res. Appl. 12, 155–176 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsBeijing Institute of TechnologyBeijingChina
  2. 2.School of Materials Science & EngineeringBeijing Institute of TechnologyBeijingChina
  3. 3.Micronano CenterBeijing Institute of TechnologyBeijingChina
  4. 4.School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations