Study of copper bismuth sulfide thin films for the photovoltaic application
- 55 Downloads
Abstract
Due to a suitable band gap and high optical absorption in the visible spectrum, copper bismuth sulfide (CBS) has raised concern as one of the potential photovoltaic absorber materials. In this work, CBS thin films were prepared by co-evaporating metal bismuth and CuS materials in a vacuum system and following by an annealing process. Morphologies, compositions, structures, electrical and optical properties of CBS thin films were all investigated. Finally, a completed photovoltaic device based on CdS/CBS heterojunction was fabricated and an efficiency of 1.7% was obtained in the current states. All of those analyses indicated CBS thin films a kind of suitable absorber material for the photovoltaic application.
Notes
Acknowledgements
The authors acknowledge the financial support of National Nature Science Foundation of China (51502015) and Beijing Institute of Technology Research Fund Program.
Supplementary material
References
- 1.A. Jager-Waldau, Sol. Energy Mater. Sol. Cells 95, 1509–1517 (2012)CrossRefGoogle Scholar
- 2.S. Li, Z. Peng, J. Zheng, F. Pan, J. Mater. Chem. A 5, 7118–7124 (2017)CrossRefGoogle Scholar
- 3.C.S. Tao, J. Jiang, M. Tao, Sol. Energy Mater. Sol. Cells 95(12), 3176–3180 (2011)CrossRefGoogle Scholar
- 4.S. Siebentritt, S. Schorr, Prog. Photovolt. Res. Appl. 20(5), 512–519 (2012)CrossRefGoogle Scholar
- 5.W. Feng, J. Han, J. Ge, J. Electron. Mater. 46, 288–295 (2017)CrossRefGoogle Scholar
- 6.J.A. Marquez Prieto, S. Levcenko, J. Just, J. Alloys Compd. 689, 182–186 (2016)CrossRefGoogle Scholar
- 7.A. Muthukannan, J. Henry, K. Mohanraj, G. Sivakumar, S. Thanikaikarasan, J. Mater. Sci. Mater. Electron. 27, 9947–9952 (2016)CrossRefGoogle Scholar
- 8.X. Liu, J. Chen, M. Luo, D. Niu, J. Tang, ACS Appl. Mater. Interfaces 6, 10687–10695 (2014)CrossRefGoogle Scholar
- 9.S. Banu, S.J. Ahn, Y.J. Eo, J. Gwak, A. Cho, Sol. Energy 145, 33–41 (2017)CrossRefGoogle Scholar
- 10.N.C. Miller, M. Bernechea, APL Mater. 6, 084503 (2018)CrossRefGoogle Scholar
- 11.L. Yu, R.S. Kokenyesi, D.A. Keszler, A. Zunger, Adv. Energy Mater. 3(1), 43–48 (2013)CrossRefGoogle Scholar
- 12.D.J. Temple, A.B. Kehoe, J.P. Allen, G.W. Watson, D.O. Scanlon, J. Phys. Chem. C 116(13), 7334–7340 (2012)CrossRefGoogle Scholar
- 13.A. Gassoumi, M. Musa Saad, S. Alfaify, T.B. Nasr, N. Bouarissa, J. Alloys Compd. 725, 181–189 (2017)CrossRefGoogle Scholar
- 14.J.T. Dufton, A. Walsh, P.M. Panchmatia, L.M. Peter, D. Colombara, M.S. Islam, Phys. Chem. Chem. Phys. 14(20), 7229–7233 (2012)CrossRefGoogle Scholar
- 15.P.S. Sonawane, P.A. Wani, L.A. Patil, T. Seth, Mater. Chem. Phys. 84, 221–227 (2004)CrossRefGoogle Scholar
- 16.N.J. Gerein, J.A. Haber, Chem. Mater. 18, 6297–6302 (2006)CrossRefGoogle Scholar
- 17.B. Murali, M. Madhuri, S.B. Krupanidhi, J. Appl. Phys. 115, 173109 (2014)CrossRefGoogle Scholar
- 18.D. Colombara, L.M. Peter, K. Hutchings, K.D. Rogers, S. Schafer, J.T.R. Dufton, M.S. Islam, Thin Solid Films 520, 5165–5171 (2012)CrossRefGoogle Scholar
- 19.N. Pai, J. Lu, D.C. Senevirathna, A.S.R. Chesman, T. Gengenbach, M. Chatti, J. Mater. Chem. C 6, 2483–2494 (2018)CrossRefGoogle Scholar
- 20.J. Han, C. Liao, T. Jiang, H. Xie, K. Zhao, M.-P. Besland, J. Cryst. Growth 382, 56–56 (2013)CrossRefGoogle Scholar
- 21.L.Q. Ouyang, M. Zhao, D.M. Zhuang, J.F. Han, Z.D. Gao, L. Guo, M.J. Cao, Sol. Energy 118, 375–383 (2015)CrossRefGoogle Scholar
- 22.W. Wubet, D.-H. Kuo, H. Abdullah, J. Solid State Chem. 230, 237–242 (2015)CrossRefGoogle Scholar
- 23.J. Hernadez-Mota, M. Espindola-Rodriguez, Y. Sanchez, I. Lopez, Y. Pena, E. Saucedo, Mater. Sci. Semicond. Proc. 87, 37–43 (2018)Google Scholar
- 24.C.H. Wu, P.W. Wu, R.C. Hsiao, C.Y. Hsu, J. Mater. Sci. Mater. Electron. 29, 11429–11438 (2018)CrossRefGoogle Scholar
- 25.J. Han, K. Zhao, A. Klein, W. Jaegermann, Sol. Energy Mater. Sol. Cell 95, 816–820 (2011)CrossRefGoogle Scholar
- 26.S.S. Hegedus, W.N. Shafarman, Prog. Photovolt. Res. Appl. 12, 155–176 (2004)CrossRefGoogle Scholar