Advertisement

The 3D crystal morphologies of NiO gas sensor and constantly improved sensing properties to ethanol

  • Chen Nie
  • Wen ZengEmail author
  • Yanqiong Li
Article

Abstract

We successfully synthesized three kinds of NiO microspheres with solid, porous and hollow nanostructure via one-step hydrothermal method. The results indicated that the gas sensing performances of the porous sphere and hollow sphere are better than that of the solid sphere, which was attributed to the high specific surface area and the small size of Debye length. We find that the ethanol molecules can enter the interior of the NiO hollow sphere to have completed gas-sensing reactions because of enough response time, which lead to abundant effective gas diffusion and sufficient contact between with NiO, and it means more atoms can directly react with the gas to increase sensitivity. In this way, this article provides some suggestions and ideas for the development of gas sensor in the future.

References

  1. 1.
    R.L. Doty, J.E. Cometto-Muniz, A.A. Jalowayski, P. Dalton, M. Kendal-Reed, M. Hodgson, Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit. Rev. Toxicol. 34, 85–142 (2004)CrossRefGoogle Scholar
  2. 2.
    D. Zhao, Z. He, G. Wang, H. Wang, Q. Zhang, Y. Li, A novel efficient ZnO/Zn(OH)F nanofiber arrays-based versatile microfluidic system for the applications of photocatalysis and histidine-rich protein separation. Sens. Actuators B 229, 281–287 (2016)CrossRefGoogle Scholar
  3. 3.
    H.J. Zhang, Q.Q. He, X.D. Zhu, D.Y. Pan, X.Y. Deng, Z. Jiao, Surfactant-free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties. CrystEngComm. 14, 3169–3176 (2012)CrossRefGoogle Scholar
  4. 4.
    P. Sun, X.D. Mei, Y.X. Cai, J. Ma, Y.F. Sun, X.S. Liang, F.M. Liu, G.Y. Lu, Synthesis and gas sensing properties of hierarchical SnO2 nanostructures. Sens. Actuators B 187, 301–307 (2013)CrossRefGoogle Scholar
  5. 5.
    D.W. Wang, S.S. Du, X. Zhou, B. Wang, J. Ma, P. Sun, Y.F. Sun, G.Y. Lu, Template-free synthesis and gas sensing properties of hierarchical hollow ZnO microspheres. CrystEngComm. 15, 7438–7442 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Tereshchenko, M. Bechelany, R. Viter, V. Khranovskyy, V. Smyntyna, N. Starodub et al., Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review. Sens. Actuators B 229, 664–677 (2016)CrossRefGoogle Scholar
  7. 7.
    C. Wang, R.Z. Sun, X. Li, Y.F. Sun, P. Sun, F.M. Liu, G.Y. Lu, Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sens. Actuators B 204, 224–230 (2014)CrossRefGoogle Scholar
  8. 8.
    X.P. Shen, G.X. Wang, D. Wexler, Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays. Sens. Actuators B 143, 325–332 (2009)CrossRefGoogle Scholar
  9. 9.
    Y.V. Kaneti, Q.M.D. Zakaria, Z.J. Zhang, C.Y. Chen, J. Yue, M.S. Liu, X.C. Jiang, A.B. Yu, Solvothermal synthesis of ZnO-decorated α-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J. Mater. Chem. A 2, 13283–13292 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Liu, H.Q. Yang, H. Zhao, L.J. An, L.H. Zhang, R.Y. Shi, L. Wang, L. Bao, Y. Chen, Synthesis and enhanced gas-sensing properties of untralong NiO nanowires assembled with NiO nanocrystals. Sens. Actuators B 156, 251–262 (2011)CrossRefGoogle Scholar
  11. 11.
    H.-Y. Lai, T.-H. Chen, C.-H. Chen, Architecture controlled synthesis of flower-like In2O3 nanobundles with significantly enhanced ultraviolet scattering and ethanol sensing. CrystEngComm. 14, 5589–5595 (2012)CrossRefGoogle Scholar
  12. 12.
    X.X. Xu, X.D. Mei, P.L. Zhao, P. Sun, Y.F. Sun, X.L. Hu, G.Y. Lu, One-step synthesis and gas sensing characteristics of urchin-like In2O3. Sens. Actuators B 186, 61–66 (2013)CrossRefGoogle Scholar
  13. 13.
    Y.Y. Lv, W.W. Zhan, Y. He, Y.T. Wang, X.J. Kong, Q. Kuang, Z.X. Xie, L.S. Zheng, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 6, 4186–4195 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Seidov, M. Acikgoz, S. Kazan, F. Mikailzade, Magnetic properties of Co3O4 polycrystal powder. Ceram. Int. 42, 12928–12931 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Umar, J.-H. Lee, R. Kumar, O.A. Dossary, A.A. Ibrahim, S. Baskoutas, Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures. Mater. Des. 105, 16–24 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Yin, S. Liu, Synthesis of CuO microstructures with controlled shape and size and their exposed facets induced enhanced ethanol sensing performance. Sens. Actuators B 227, 328–335 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Zhang, D.W. Zeng, Q. Zhu, J.J. Wu, Q.W. Huang, C.S. Xie, Effect of nickel vacancies on the room-temperature NO2 sensing properties of mesoporous NiO nanosheets. J. Phys. Chem. C 120, 3936–3945 (2016)CrossRefGoogle Scholar
  18. 18.
    G.X. Zhu, C.Y. Xi, H. Xu, D. Zheng, Y.J. Liu, X. Xu, X.P. Shen, Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv. 2, 4236–4241 (2012)CrossRefGoogle Scholar
  19. 19.
    I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas sensing devices. Acta Mater. 61, 974–1000 (2013)CrossRefGoogle Scholar
  20. 20.
    X.L. Kuang, T.M. Liu, D.F. Shi, W.X. Wang, M.P. Yang, S. Hussain, X.H. Peng, F.S. Pan, Hydrothermal synthesis of hierarchical SnO2 nanostructures made of superfine nanorods for smart gas sensor. Appl. Surf. Sci. 364, 371–377 (2016)CrossRefGoogle Scholar
  21. 21.
    H.M. Yang, Q.F. Tao, X.C. Zhang, Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. J. Alloys Compd. 459, 98–102 (2008)CrossRefGoogle Scholar
  22. 22.
    G.M. Bai, H.X. Dai, J.G. Deng, Y.X. Liu, K.M. Ji, Porous NiO nanoflowers and nanourchins: highly active catalysts for toluene combustion. Catal. Commun. 27, 148–153 (2012)CrossRefGoogle Scholar
  23. 23.
    J.F. Zhao, Y. Shao, J.C. Zha, H.Y. Wang, Y. Yang, S.D. Ruan, G. Yang, J.H. Chen, Large-scale preparation of crinkly NiO layers as anode materials for lithium-ion batteries. Ceram. Int. 42, 3479–3484 (2016)CrossRefGoogle Scholar
  24. 24.
    M.X. Liu, X. Wang, D.Z. Zhu, L.C. Li, H. Duan, Z.J. Xu, Z.W. Wang, L.H. Gan, Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. Chem. Eng. J. 308, 240–247 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.F. Cui, C. Wang, S.J. Wu, G. Liu, F.F. Zhang, T.M. Wang, Lotus-root-like NiO nanosheets and flower-like NiO microspheres: synthesis and magnetic properties. CrystEngComm. 13, 4930–4934 (2011)CrossRefGoogle Scholar
  26. 26.
    H.J. Kim, K.I. Choi, K.M. Kim, C.W. Na, J.H. Lee, Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens. Actuators B 171–172, 1029–1037 (2012)CrossRefGoogle Scholar
  27. 27.
    H.R. An, Y. Li, P. Long, Y. Gao, C.Q. Qin, C. Cao, Y.Y. Feng, W. Feng Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources 312, 146–155 (2016)CrossRefGoogle Scholar
  28. 28.
    P. Sun, X. Zhou, C. Wang, K. Shimanoe, G. Lu, N. Yamazoe, Hollow SnO2/alpha-Fe2O3 spheres with a double-shell structure for gas sensors. J. Mater. Chem. A 2, 1302–1308 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Hu, J. Yang, W.D. Wang, Y. Xue, Y.J. Sun, P.W. Li, K. Lian, W.D. Zhang, L. Chen, J. Shi, Y. Chen, Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection. Mater. Res. Bull. 102, 294–303 (2018)CrossRefGoogle Scholar
  30. 30.
    B.Y. Kim, J.W. Yoon, J.K. Kim, Y.C. Kang, J.H. Lee, Dual role of multiroom-structured Sn-doped NiO microspheres for ultrasensitive and highly selective detection of xylene. ACS Appl. Mater. Interfaces 10, 16605–16612 (2018)CrossRefGoogle Scholar
  31. 31.
    G.C. Zhang, X. Han, W.W. Bian, J.H. Zhan, X.C. Ma, Facile synthesis and high formaldehyde-sensing performance of NiO–SnO2 hybrid nanospheres. RSC Adv. 5, 3919–3926 (2016)CrossRefGoogle Scholar
  32. 32.
    Q. Li, W.B. Gao, X.P. Zhang, H.T. Liu, M.L. Dou, Z.P. Zhang, F. Wang, Mesoporous NiO nanosphere: a sensitive strain sensor for determination of hydrogen peroxide. RSC Adv. 8, 13401–13407 (2018)CrossRefGoogle Scholar
  33. 33.
    C. Nie, W. Z, X.Y. Jing, H. Ye, NiO hollow nanospheres with different surface by a bubble-template approach and its gas sensing. J. Mater. Sci. 29, 7480–7488 (2018)Google Scholar
  34. 34.
    L.Y. Lin, T.M. Liu, B. Miao, W. Zeng, Synthesis of NiO nanostructures from 1D to 3D and researches of their gas-sensing properties. Mater. Res. Bull. 48, 449–454 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Wang, W. Zeng, Z.C. Wang, Assembly of 2D nanosheets into 3D flower-like NiO: synthesis and the influence of petal thickness on gas-sensing properties. Ceram. Int. 42, 4567–4573 (2016)CrossRefGoogle Scholar
  36. 36.
    K.D. Diao, J.C. Zhang, M.J. Zhou, Y.J. Tang, S.X. Wang, X.D. Cui, Highly controllable and reproducible ZnO nanowire arrays growth with focused ion beam and low-temperature hydrothermal method. Appl. Surf. Sci. 317, 220–225 (2014)CrossRefGoogle Scholar
  37. 37.
    D.B. Kuang, B.X. Lei, Y.P. Pan, X.Y. Yu, C.Y. Su, Fabrication of novel hierarchical beta-Ni(OH)2 and NiO microspheres via an easy hydrothermal process. J. Phys. Chem. C 113, 5508–5513 (2009)CrossRefGoogle Scholar
  38. 38.
    C. Wang, G.H. Du, K. Stahl, H.X. Huang, Y.J. Zhong, J.Z. Jiang, Ultrathin SnO2 nanosheets: oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances. J. Phys. Chem. C 116, 4000–4011 (2012)CrossRefGoogle Scholar
  39. 39.
    G.M. Bai, H.X. Dai, J.G. Deng, Y.X. Liu, W.G. Qiu, Z.X. Zhao, X.W. Li, H.G. Yang, The microemulsion preparation and high catalytic performance of mesoporous NiO nanorods and nanocubes for toluene combustion. Chem. Eng. J. 219, 200–208 (2013)CrossRefGoogle Scholar
  40. 40.
    E. Uchaker, N. Zhou, Y.W. Li et al., Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J. Phys. Chem. C 117, 1621–1626 (2013)CrossRefGoogle Scholar
  41. 41.
    C.W. Kuang, W. Zeng, H. Ye, Y. Qiong, A novel approach for fabricating NiO hollow spheres for gas sensors. Phys E 97, 314–316 (2018)CrossRefGoogle Scholar
  42. 42.
    S. Pokhrel, C.E. Simion, V. Quemener, N. Bârsan, U. Weimar, Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements. Sens. Actuators B 133, 78–83 (2008)CrossRefGoogle Scholar
  43. 43.
    C. Wang, X.Y. Cheng, X. Zhou, P. Sun, X.L. H, K. Shimanoe, G.Y. Lu, N. Yamazoe, Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl. Mater. Interfaces 6, 12031–12037 (2014)CrossRefGoogle Scholar
  44. 44.
    G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R 61, 1–39 (2008)CrossRefGoogle Scholar
  45. 45.
    Q. Zhou, W.G. Chen, J. Li, C. Tang, H. Zhang, Nanosheet-assembled flower-like SnO2 hierarchical structures with enhanced gas-sensing performance. Mater. Lett. 161, 499–502 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.School of Electronic and Electrical EngineeringChongqing University of Arts and SciencesChongqingChina

Personalised recommendations