High sensitivity capacitive humidity sensors based on Zn1−xNixO nanostructures and plausible sensing mechanism

  • Ning Sun
  • Zi Ye
  • Xuliang Kuang
  • Weijing LiuEmail author
  • Gaofang Li
  • Wei Bai
  • Xiaodong Tang


Zn1−xNixO (X = 0%, 1%, 3%, 5%, 10%) nanowires were synthesized by the hydrothermal method, and the prepared materials were characterized and analyzed by XRD, SEM and XPS. Then, the materials were positioned on the pre-designed Ti/Au interdigital electrode to fabricate humidity sensors by the dielectrophoresis method. The humidity sensitive characteristics of the sensors were studied by combining complex impedance spectroscopy and theory of multilayer adsorption. The results show that the surface oxygen vacancies concentration can be regulated by Ni doping process. Under the combined action of Ni ions and oxygen vacancies, the performance of humidity sensors has been improved significantly. Especially, 5% Ni doped ZnO humidity sensor shows a high capacitance sensitivity, which is varied by more than four orders of magnitude with increasing the relative humidity from 11 to 95%, respectively. Moreover, the response time and recovery time are reduced to 27 s and 2 s, which is much better than undoped ZnO humidity sensor. The results indicate that the doping of Ni elements play an important role in the sensing property improvement of ZnO humidity sensor.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61674058, 61604002, 11647023), Shanghai Natural Science Foundation (Grant No. 17ZR1411500).


  1. 1.
    Z.M. Rittersma, Recent achievements in miniaturised humidity sensors a review of transduction techniques. Sens. Actuators A 96, 196–210 (2002). CrossRefGoogle Scholar
  2. 2.
    H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014). CrossRefGoogle Scholar
  3. 3.
    A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, N. Osman, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors 14, 16343–16422 (2014). CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242, 212–217 (2005). CrossRefGoogle Scholar
  5. 5.
    S.K. Misra, N.K. Pandey, Analysis on activation energy and humidity sensing application of nanostructured SnO2-doped ZnO material. Sens. Actuators A 249, 8–14 (2016). CrossRefGoogle Scholar
  6. 6.
    J.W. Ren, L.S. Yi, C. Chu, Composite of TiO2 nanowires and Nafion as humidity sensor material. Sens. Actuators B 115, 198–204 (2006). CrossRefGoogle Scholar
  7. 7.
    R.J. Wu, Y.L. Sun, C.C. Lin, H.W. Chen, M. Chavali, Micro humidity sensors based on ZnO-In2O3 thin films with high performances. Sens. Actuators B 165, 76–81 (2012). CrossRefGoogle Scholar
  8. 8.
    N.K. Pandey, K. Tiwari, A. Ro, A. Mishra, A. Govindan, Ag-loaded WO3 ceramic nanomaterials: characterization and humidity sensing studies. Int. J. Appl. Ceram. Technol. 10, 150–159 (2013). CrossRefGoogle Scholar
  9. 9.
    Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. 16, 829–858 (2004). Google Scholar
  10. 10.
    S.P. Chang, S.J. Chang, C.Y. Lu, M.J. Li, C.L. Hsu, Y.Z. Chiou, T.J. Hsueh, I.C. Chen, A ZnO nanowire-based humidity sensor. Superlattices Microstruct. 47, 772–778 (2010). CrossRefGoogle Scholar
  11. 11.
    S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011). CrossRefGoogle Scholar
  12. 12.
    D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. 80, 383–387 (2001). CrossRefGoogle Scholar
  13. 13.
    M. Xu, Q. Li, Y. Ma, H. Fan, Ni doped ZnO nanorods gas sensor: enhanced gas-sensing properties, AC and DC electrical behaviors. Sens. Actuators B 199, 403–409 (2014). CrossRefGoogle Scholar
  14. 14.
    J.H. He, C.S. Lao, L.J. Chen, D. Davidovic, Z.L. Wang, Large-Scale Ni doped ZnO nanowire arrays and electrical and optical properties. J. Am. Chem. Soc. 127, 16376–16377 (2005). CrossRefGoogle Scholar
  15. 15.
    J. Wang, B. Singh, J.H. Park, S. Rathi, I.y. Lee, S. Maeng, H. Joh, C.H. Lee, G.H. Kim, Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature. Sens. Actuators B 194, 296–302 (2014). CrossRefGoogle Scholar
  16. 16.
    B. Yang, Z. Yang, Z. Zhao, Y. Hu, J. Li, The assembly of carbon nanotubes by dielectrophoresis: Insights into the dielectrophoretic nanotube-nanotube interactions. Physica E 56, 117–122 (2014). CrossRefGoogle Scholar
  17. 17.
    N.M. Kiasari, P. Servati, Dielectrophoresis-assembled ZnO nanowire oxygen sensors. IEEE Electron. Device Lett. 32, 982–984 (2011). CrossRefGoogle Scholar
  18. 18.
    Y.C. Chang, Ni doped ZnO nanotower arrays with enhanced optical and field emission properties. RSC Adv. 4, 56241–56247 (2014). CrossRefGoogle Scholar
  19. 19.
    B. Pal, D. Sarkar, P.K. Giri, Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: correlation of magnetic moment with defect density. Appl. Surf. Sci. 356, 804–811 (2015). CrossRefGoogle Scholar
  20. 20.
    K.Raja, P.S.Ramesh, D.Geetha, Synthesis, structural and optical properties of ZnO and Ni doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochim. Acta A 120, 19–24 (2014). CrossRefGoogle Scholar
  21. 21.
    W. Yu, L.H. Yang, X.Y. Teng, J.C. Zhang, Z.C. Zhang. Influence of structure characteristics on room temperature ferromagnetism of Ni doped ZnO thin films, J. Appl. Phys. 103, 1–69 (2008). Google Scholar
  22. 22.
    A.K. Rana, P. Bankar, Y. Kumar, M.A. More, D.J. Late, P.M. Shirage, Synthesis of Ni doped ZnO nanostructures by low-temperature wet chemical method and their enhanced field emission properties. RSC Adv. 6, 104318–104324 (2017). CrossRefGoogle Scholar
  23. 23.
    V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6–10 (2012). CrossRefGoogle Scholar
  24. 24.
    J. Herran, I. Fernandez, E. Ochoteco, G. CabaneroH, l. Grande, The role of water vapour in ZnO nanostructures for humidity sensing at room temperature. Sens. Actuators B 198, 239–242 (2014). CrossRefGoogle Scholar
  25. 25.
    P. He, J.R. Brent, H. Ding, J. Yang, D.J. Lewis, P.O. Brien, B. Derby, Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10, 5599–5604 (2018). CrossRefGoogle Scholar
  26. 26.
    A. Ievtushenko, O. Khyzhuna, I. Shtepliuka, V. Tkachb, V. Lazorenkoa, G. Lashkareva, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of A1-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000). CrossRefGoogle Scholar
  27. 27.
    A. Sharma, Y. Kumar, K. Mazumder, A.K. Rana, P.M. Shirage, Controlled Zn1-xNixO nanostructures for an excellent humidity sensor and plausible sensing mechanism. New J. Chem. 42, 374–401 (2018). Google Scholar
  28. 28.
    W. Kim, M. Choi, K. Yong, Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens. Actuators B 209, 989–996 (2015). CrossRefGoogle Scholar
  29. 29.
    Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, K.S. Karimov, A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13, 3615–3624 (2013). CrossRefGoogle Scholar
  30. 30.
    M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sens. Actuators B 49, 179–185 (1998). CrossRefGoogle Scholar
  31. 31.
    F. Aziz, M.H. Sayyad, K. Sulaiman, B. Majlis, K.S. Karimov, Z. Ahmad, G. Sugandi, Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 23, 001–014 (2012). Google Scholar
  32. 32.
    Y. Zhang, B. Fu, K. Liu, Y. Zhang, X. Li, S. Wen, Y. Chen, S. Ruan, Humidity sensing properties of FeCl3-NH2-MIL-125(Ti) composites. Sens. Actuators B 201, 281–285 (2014). CrossRefGoogle Scholar
  33. 33.
    V.K. Tomer, N. Thangaraj, S. Gahlot, K. Kailasam, Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale 8, 19794–19803 (2016). CrossRefGoogle Scholar
  34. 34.
    T. Yang, Y.Z. Yu, L.S. Zhu, Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B 208, 327–333 (2015). CrossRefGoogle Scholar
  35. 35.
    W.P. Tai, J.H. Oh, Humidity sensing behaviors of nano-crystalline Al-doped ZnO thin films prepared by sol-gel process. J. Mater. Sci. 13, 391–394 (2002). Google Scholar
  36. 36.
    R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, F. Besenbacher, Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110). Phys. Rev. Lett. 87, 266104 (2001). CrossRefGoogle Scholar
  37. 37.
    J.H. Anderson, G.A. Parks, The electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. Lett. 72, 3666–3668 (1968). Google Scholar
  38. 38.
    S. Agarwal, G.L. Sharma, Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal-electrochemical method. Sens. Actuators B 85, 205–211 (2002). CrossRefGoogle Scholar
  39. 39.
    N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information and Electrical EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.East China Normal UniversityShanghaiChina

Personalised recommendations