Advertisement

Effect of CuS nanocrystalline particles on counter electrodes of multi-wall carbon nanotubes for QDSCs

  • Yinan Zhang
  • Qiming Wang
  • Di Wang
  • Wei Zheng
Article
  • 12 Downloads

Abstract

CuS nanocrystalline particles are deposited into the acid-treated multi-wall carbon nanotubes (MWCNTs) film on the fluorine-doped tin oxide glass substrate through the successive ionic layer adsorption and reaction combined with spin-coating technology to form MWCNTs/CuS composite counter electrode (CE). The CuS adding amount is changed in different cycles to discuss its effect mechanism on the photoelectric properties of MWCNTs/CuS composite CE based quantum dot sensitized solar cells (QDSCs). The TiO2 photoanodes are prepared by the electrospinning technique with CdS and ZnS as co-sensitizer. QDSCs are assembled with photoanodes, the polysulfide electrolyte and abovementioned CEs. The CEs are characterized by X-ray diffraction, transmission electron microscope and energy dispersed X-ray detector, which verifies CuS nanocrystalline particles are attached to MWCNTs successfully. The photoelectric properties are analyzed by Nyquist, Tafel and JV curves. The results show that the introduction of CuS nanocrystalline particles can promote reduction rate of polysulfide species and the short circuit current density (Jsc) to improve catalytic activity, leading to a higher power conversion efficiency (PCE). The MWCNTs based CE with deposition CuS in eight cycles exhibits the best photoelectric performance within all CE samples and the electrical conductivity of MWCNTs/8CuS CE is superior to that of Pt CE according to Nyquist and Tafel curve analysis. PCE of QDSCs with MWCNTs/8CuS CE is up to 5.186%, which is a little lower than that of Pt CE (5.250%), but it possesses a higher Jsc value (18.028 mA cm−2) than that of Pt CE (16.057 mA cm−2). The low-cost MWCNTs/CuS composite CE with simple preparation is more suitable than Pt CE for commercial application of QDSCs.

Notes

Acknowledgements

This work was financially supported by Harbin Project of outstanding academic leaders (Grant No. 2017RAXXJ078) and the Heilongjiang Province Natural Science Fund (Grant No. E2018044).

References

  1. 1.
    C. Shen, D. Fichou, Q. Wang, Interfacial engineering for quantum-dot-sensitized solar cells. Chem. Asian J. 11, 1183–1193 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Cheng, E.S. Arinze, N. Palmquist, S.M. Thon, Advancing colloidal quantum dot photovoltaic technology. Nanophotonics 5, 31–54 (2016)CrossRefGoogle Scholar
  3. 3.
    K.V. Vokhmintcev, P.S. Samokhvalov, I. Nabiev, Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today 11, 189–211 (2016)CrossRefGoogle Scholar
  4. 4.
    B.K. Liu, Y.F. Xue, J.T. Zhang, D.J. Wang, T.F. Xie, X.Y. Suo, L.L. Mu, H.Z. Shi, Study on photo-induced charge transfer properties in CdS quantum-dot-sensitized mesoporous TiO2 photoelectrode. J. Mater. Sci.: Mater. Electron. 27, 10213–10220 (2016)Google Scholar
  5. 5.
    J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)CrossRefGoogle Scholar
  6. 6.
    J.J. Tian, G.Z. Cao, Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320–321, 193–215 (2016)CrossRefGoogle Scholar
  7. 7.
    S.H. Pan, R. Zhou, H.H. Niu, L. Wan, B. Huang, Y.Z. Huang, F.W. Ji, J.Z. Xu, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)CrossRefGoogle Scholar
  8. 8.
    M.A. Green, Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovolt. 9, 123 (2001)CrossRefGoogle Scholar
  9. 9.
    P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008)CrossRefGoogle Scholar
  10. 10.
    F. Malara, M. Manca, L.D. Marco, P. Pareo, G. Gigli, Flexible carbon nanotube-based composite plates as efficient monolithic counter electrodes for dye solar cells. ACS Appl. Mater. Interfaces 3, 3625–3632 (2011)CrossRefGoogle Scholar
  11. 11.
    N. Papageorgiou, Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord. Chem. Rev. 248, 1421–1446 (2004)CrossRefGoogle Scholar
  12. 12.
    E. Olsen, G. Hagen, S.E. Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol. Energy Mater. Sol. Cells 63, 267–273 (2000)CrossRefGoogle Scholar
  13. 13.
    H. Ke, X. Zhang, W.W. Guo, A. Zhang, Z.M. Wang, C.S. Huang, N.Q. Jia, A MWCNTs-Pt nanohybrids-based highly sensitive electrochemiluminescence sensor for flavonoids assay. Talanta 171, 1–7 (2017)CrossRefGoogle Scholar
  14. 14.
    J.Y. Ahn, J.H. Kim, J.M. Kim, D. Lee, S.H. Kim, Multiwalled carbon nanotube thin films prepared by aerosol deposition process for use as highly efficient Pt-free counter electrodes of dye-sensitized solar cells. Sol. Energy 107, 660–667 (2014)CrossRefGoogle Scholar
  15. 15.
    J.Y. Lin, C.H. Lien, S.W. Chou, Multi-wall carbon nanotube counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. J. Solid State Electrochem. 16, 1415–1421 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Zheng, J.H. Huo, Y.G. Tu, J.H. Wu, L.H. Hu, S.Y. Dai, Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells. Electrochim. Acta 173, 252–259 (2015)CrossRefGoogle Scholar
  17. 17.
    S.Y. Tai, C.J. Liu, S.W. Chou, F.S. Chien, J.Y. Lin, T.W. Lin, Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem. 22, 24753–24759 (2012)CrossRefGoogle Scholar
  18. 18.
    A.A. Memon, S.A. Patil, K.C. Sun, N. Mengal, A.A. Arbab, I.A. Sahito, S.H. Jeong, H.S. Kim, Carbonous metallic framework of multi-walled carbon nanotubes/Bi2S3 nanorods as heterostructure composite films for efficient quasi-solid state DSSCs. Electrochim. Acta 283, 997–1005 (2018)CrossRefGoogle Scholar
  19. 19.
    Y.N. Zhang, J.Y. Zhang, W. Zheng, The stability of CdS QDSCs based on optimized MWCNs/CuS counter electrodes. IEEE J. Photovolt. 8, 1142–1148 (2018)CrossRefGoogle Scholar
  20. 20.
    K.C. Huang, Y.C. Wang, P.Y. Chen, Y.H. Lai, J.H. Huang, Y.H. Chen, R.X. Dong, C.W. Chu, J.J. Lin, K.C. Ho, High performance dye-sensitized solar cells based on platinum nanoparticle/multi-wall carbon nanotube counter electrodes: the role of annealing. J. Power Sources 203, 274–281 (2012)CrossRefGoogle Scholar
  21. 21.
    H.H. Niu, S.X. Qin, X.L. Mao, S.W. Zhang, R.B. Wang, L. Wan, J.Z. Xu, S.D. Miao, Axle-sleeve structured MWCNTs/polyaniline composite film as cost-effective counter-electrodes for high efficient dye-sensitized solar cells. Electrochim. Acta 121, 285–293 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.M. Xiao, J.Y. Lin, J.H. Wu, S.Y. Tai, G.T. Yue, T.W. Lin, Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. J. Power Sources 233, 320–325 (2013)CrossRefGoogle Scholar
  23. 23.
    Y.M. Xiao, J.Y. Lin, S.Y. Tai, S.W. Chou, G.T. Yue, J.H. Wu, Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22, 19919–19925 (2012)CrossRefGoogle Scholar
  24. 24.
    M.R. Al-Bahrani, W. Ahmad, H.F. Mehnane, Y. Chen, Z. Cheng, Y.H. Gao, Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells. Nano-micro Lett. 7, 298–306 (2015)CrossRefGoogle Scholar
  25. 25.
    X.W. Xiong, D.H. Xiong, W.J. Zhang, L.Q. Ming, Z. Xu, Z.F. Huang, M.K. Wang, W. Chen, Y.B. Cheng, Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system. Nanoscale 5, 6992–6998 (2013)CrossRefGoogle Scholar
  26. 26.
    H.J. Kim, S.M. Suh, S.S. Rao, D. Punnoose, C.V. Tulasivarma, C. Gopi, N. Kundakarla, S. Ravi, I.K. Durga, Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. Electroanal. Chem. 777, 123–132 (2016)CrossRefGoogle Scholar
  27. 27.
    Z.J. Xu, T. Li, Q. Liu, F.Y. Zhang, X.D. Hong, S.Y. Xie, C.X. Lin, X.Y. Liu, W.X. Guo, Controllable and large-scale fabrication of rectangular CuS network films for indium tin oxide-and Pt-free flexible dye-sensitized solar cells. Electrochim. Acta 179, 279–304 (2018)Google Scholar
  28. 28.
    X.J. Zhang, W.X. Guo, C.F. Pan, Transparent conducting oxide-free and Pt-free flexible dye-sensitized solar cells employing CuS-nanosheet networks as counter electrodes. J. Mater. Chem. A 4, 6569–6576 (2016)CrossRefGoogle Scholar
  29. 29.
    Z.J. Xu, T. Li, F.Y. Zhang, X.D. Hong, S.Y. Xie, M.D. Ye, W.X. Guo, X.Y. Liu, Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells. Nanoscale 9, 3826–3833 (2017)CrossRefGoogle Scholar
  30. 30.
    W. Zheng, Y.N. Zhang, D. Wang, Q.M. Wang, Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer. J. Mater. Sci.: Mater. Electron. 29, 14796–14802 (2018)Google Scholar
  31. 31.
    H. Wu, X.Y. Wang, L.L. Jiang, C. Wu, Q.L. Zhao, X. Liu, B.A. Hu, L.H. Yi, The effects of electrolyte on the supercapacitive performance of activated calcium carbide derived carbon. J. Power Sources 226, 202–209 (2013)CrossRefGoogle Scholar
  32. 32.
    Y. Li, C.L. Zhu, T. Lu, Z.P. Guo, D. Zhang, J. Ma, S.M. Zhu, Simple fabrication of a Fe2O3/carbon composite for use in a high-performance lithium ion battery. Carbon 52, 565–573 (2013)CrossRefGoogle Scholar
  33. 33.
    Y.J. Yang, J.F. Zi, W.K. Li, Enzyme-free sensing of hydrogen peroxide and glucose at a CuS nanoflowers modified glassy carbon electrode. Electrochim. Acta 115, 126–130 (2014)CrossRefGoogle Scholar
  34. 34.
    Q. Wang, J.E. Moser, M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005)CrossRefGoogle Scholar
  35. 35.
    C.D. Sunesh, C.V.V.M. Gopi, M.P.A. Muthalif, H.J. Kim, Y. Choe, Improving the efficiency of quantum-dot-sensitized solar cells by optimizing the growth time of the CuS counter electrode. Appl. Surf. Sci. 416, 446–453 (2017)CrossRefGoogle Scholar
  36. 36.
    S.Q. Fan, B. Fang, J.H. Kim, B. Jeong, C. Kim, J.S. Yu, J. Ko, Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells. Langmuir 26, 13644–13649 (2010)CrossRefGoogle Scholar
  37. 37.
    C. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale 7, 12552 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Kumar, M. Nehra, A. Deep, D. Kedia, N. Dilbaghi, K.H. Kim, Quantum-sized nanomaterials for solar cell applications. Renew. Sustain. Energy Rev. 73, 821–839 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringHarbin University of Science and TechnologyHarbinChina
  2. 2.Centre Énergie Matériaux et TélécommunicationsInstitut National de la Recherche ScientifiqueQuebec CityCanada

Personalised recommendations