Structure, magnetic and electrical properties of Ba-modified Bi2Fe4O9

  • Y. Y. Liang
  • J. X. Lei
  • X. X. Wang
  • L. G. Wang
  • C. M. ZhuEmail author


Bi2−xBaxFe4O9 material (0 ≤ x ≤ 0.125) has been synthesized by sol–gel method. Structural characterization shows the single phase of orthorhombic Bi2Fe4O9. Moreover, the structure of Bi2−xBaxFe4O9 gradually presents a regular variation with increasing Ba content. Surface morphology of the samples is examined showing homogeneous grain distribution accompanied by the decreasing grain size with increase of Ba. Due to doping Ba, magnetic properties are significantly enhanced shown as the increasing remnant magnetization and saturation magnetization. Dielectric constant shows the increasing tendency with colossal values especially at high temperature range. In addition, the real part of ac conductivity exhibits the increasing trend with increasing frequency and the content of Ba. The analysis of impedance spectrum also suggests the increasing conductivity. The improvement in magnetic and electrical properties of Bi2Fe4O9 by substitution of Ba can be attributed to the different ionic radius of Ba2+ from Bi3+ to Fe3+ which results in the change of magnetic structure and morphology.



This work was supported by the PhD research startup foundation of Guangxi Normal University.


  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 422, 759–765 (2006)CrossRefGoogle Scholar
  2. 2.
    J. Ma, J.M. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin film. Adv. Mater. 23, 1062–1087 (2011)CrossRefGoogle Scholar
  3. 3.
    A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 97, 093903 (2005)CrossRefGoogle Scholar
  4. 4.
    X.Q. Zhang, Y. Sui, X.J. Wang, Y. Wang, Z. Wang, Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J. Alloys Compd. 507, 157–161 (2010)CrossRefGoogle Scholar
  5. 5.
    Z. Yang, Y. Huang, B. Dong, H.L. Li, S.Q. Shi, Densely packed single-crystal Bi2Fe4O9 nanowires fabricated from a template-induced sol-gel route. J. Solid State Chem. 179, 3324–3329 (2006)CrossRefGoogle Scholar
  6. 6.
    A.K. Singh, S.D. Kaushik, B. Kumar, P.K. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik, Substantial magnetoelectric coupling near room temperature in Bi2Fe4O9. Appl. Phys. Lett. 92, 132910 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Koizumi, N. Niizeki, T. Ikeda, An X-ray study on Bi2O3–Fe2O3 system. Jpn. J. Appl. Phys. 3, 495–496 (1964)CrossRefGoogle Scholar
  8. 8.
    M. Liu, H.B. Yang, Y. Lin, Y.Y. Yang, Influence of Co doping on the magnetic properties of Bi2Fe4O9 powders. J. Mater. Sci.: Mater. Electron. 25, 4949–4953 (2014)Google Scholar
  9. 9.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27, 11691–11697 (2016)Google Scholar
  10. 10.
    Z.M. Tian, Y. Qiu, S.L. Yuan, M.S. Wu, S.X. Huo, H.N. Duan, Enhanced multiferroic properties in Ti-doped Bi2Fe4O9 ceramics. J. Appl. Phys. 108, 064110 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Qiu, Z.J. Zou, R.R. Sang, H. Wang, D. Xue, Z.M. Tian, G.S. Gong, S.L. Yuan, Enhanced magnetic and ferroelectric properties in Cr doped Bi2Fe4O9 ceramics. J. Mater. Sci.: Mater. Electron. 26, 1732–1736 (2015)Google Scholar
  12. 12.
    B. Bhushan, A. Basumallick, S.K. Bandopadhyay, N.Y. Vasanthacharya, D. Das, Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D 42, 065004 (2009)CrossRefGoogle Scholar
  13. 13.
    C.M. Zhu, L.G. Wang, S.L. Yuan, Z.M. Tian, Room-temperature multiferroic properties of 0.6BiFeO3–0.4(Bi0.5Na0.5)(1–x)BaxTiO3 solid-solution ceramics. J. Sol-Gel. Sci. Technol. 76, 289–297 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2–xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci.: Mater. Electron. 26, 9776–9781 (2015)Google Scholar
  15. 15.
    A. Gautam, V.S. Rangra, Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite. Cryst. Res. Technol. 45, 953–956 (2010)CrossRefGoogle Scholar
  16. 16.
    G. Alvarez, J. Contreras, A. Conde-Gallardo, H. Montiel, R. Zamorano, Detection of para-antiferromagnetic transition in Bi2Fe4O9 powders by mean of microwave absorption measurements. J. Magn. Magn. Mater. 348, 17–21 (2013)CrossRefGoogle Scholar
  17. 17.
    E. Ressouche, V. Simonet, B. Canals, M. Gospodinov, V. Skumryev, Magnetic frustration in an iron-based cairo pentagonal lattice. Phys. Rev. Lett. 103, 267204 (2009)CrossRefGoogle Scholar
  18. 18.
    R. Rai, S. Sharma, R. Rani, A. Pereira, A. de J.M. Almeida, Dielectric and magnetic studies of (NKNLS)1–x-(NZFO)x multiferroic composites. J. Alloys Compd. 614, 277–282 (2014)CrossRefGoogle Scholar
  19. 19.
    K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)CrossRefGoogle Scholar
  20. 20.
    P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceram. Int. 40, 7805–7816 (2014)CrossRefGoogle Scholar
  21. 21.
    S.C. Mazumdar, M.N.I. Khan, M.F. Islam, A.K.M.A. Hossain, Tuning of magnetoelectric coupling in (1-y)Bi0.8Dy0.2FeO3-yNi0.5Zn0.5Fe2O4 multiferroic composites. J. Magn. Magn. Mater. 401, 443–454 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. Y. Liang
    • 1
  • J. X. Lei
    • 1
  • X. X. Wang
    • 1
  • L. G. Wang
    • 1
  • C. M. Zhu
    • 1
    Email author
  1. 1.College of Physics and TechnologyGuangxi Normal UniversityGuilinPeople’s Republic of China

Personalised recommendations