Advertisement

Novel photo-voltaic device based on Bi1−xLaxFeO3 perovskite films with higher efficiency

  • T. M. W. J. Bandara
  • C. S. Knee
  • M. Furlani
  • I. Albinsson
  • B.-E. Mellander
Article
  • 31 Downloads

Abstract

Photovoltaic cells using polycrystalline La substituted bismuth iron oxide, Bi1−xLaxFeO3, (0.1 ≤ x ≤ 0.4), films as the light harvesting component were investigated in this work. A novel cell set-up utilizing a double layered TiO2 film as top contact and a thin layer of quasi-solid polymer electrolyte as back contact was used and a significant enhancement in cell efficiency was observed for assemblies based on x ≥ 0.2 samples, coincident with a structural transition of Bi1−xLaxFeO3 from ferroelectric to non-ferroelectric. The power conversion efficiency of the PV device was 0.13% for the cell with x = 0.2 at 1 sun irradiation. The short circuit current density for this La composition was 0.35 mA cm−2. A hysteretic behaviour was observed for higher La compositions when the scanning is from open-circuit (OP) to short-circuit (SC) which may be attributed to polarization effects. The results at x ≥ 0.2 show an improved performance with respect to BiFeO3 based systems, suggesting the stabilization of the non-ferroelectric crystal structure leads either to a more efficient separation of photo-generated electron–hole pairs and/or enhanced charge transport. The findings represent a step towards the realisation of facile to fabricate, inorganic solid state photovoltaic devices.

Notes

Acknowledgements

The authors wish to acknowledge the research support provided by Chalmers University of Technology Sweden, Carl Tryggers Foundation for Scientific Research (Grant 11:301), the Swedish Research Council (Grant 348-2014-4284) and the National Research Council of Sri Lanka.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    B. O’Regan, M. Gratzel, A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  2. 2.
    K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51, 15894–15897 (2015)CrossRefGoogle Scholar
  3. 3.
    L. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, R. Yamanaka, Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance. Appl. Phys. Lett. 86, 213501 (2005)CrossRefGoogle Scholar
  4. 4.
    Q. Jiang, R. Chen, H. Chen, J. Jiang, X. Yang, Y. Ju, R. Ji, Y. Zhang, Improved performance in dye-sensitized solar cells via controlling crystalline structure of nickel selenide. J. Mater. Sci. 53(10), 7672–7682 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt(II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629–634 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Tributsch, Review dye sensitization solar cells: a critical assessment of the learning curve. Coord. Chem. Rev. 248, 1511–1530 (2004)CrossRefGoogle Scholar
  7. 7.
    I.A. Sahito, F. Ahmed, Z. Khatri, K.C. Sun, S.H. Jeong, Enhanced ionic mobility and increased efficiency of dye-sensitized solar cell by adding lithium chloride in poly(vinylidene fluoride) nanofiber as electrolyte medium. J. Mater. Sci. 52(24), 13920–13929 (2017)CrossRefGoogle Scholar
  8. 8.
    R.A. Senthil, J. Theerthagiri, J. Madhavan, K. Murugan, P. Arunachalam, A.K. Arof, Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C3N4/TiO2 photoanode. J. Solid State Chem. 242, 199–206 (2016)CrossRefGoogle Scholar
  9. 9.
    G.H. Kim, S.C. Hong, Porous composite separator membranes of dye-sensitized solar cells with flexible substrate for their improved stability. J. Mater. Sci. 53(17), 12365–12373 (2018)CrossRefGoogle Scholar
  10. 10.
    K.F. Jensen, H. Brandt, C. Im, J. Wilde, A. Hinsch, Stability of UV Illuminated dye sensitized solar cells (DSC) studied by photoinduced absorption in the second range, The 28th European PV solar energy conference and exhibition, 30 Sep 4 Oct (2013), ParisGoogle Scholar
  11. 11.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  12. 12.
    J. Burschka, N. Pellet, S.-J. Moon, R.H. Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRefGoogle Scholar
  13. 13.
    M.A. Green, A.H. Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014)CrossRefGoogle Scholar
  14. 14.
    F. Bella, Polymer electrolytes and perovskites: lights and shadows in photovoltaic devices. Electrochim. Acta 175, 151–161 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Runa, S. Feng, G. Wen, F. Feng, J. Wang, L. Liu, P. Su, H. Yang, W. Fu, Highly reproducible perovskite solar cells based on solution coating from mixed solvents. J. Mater. Sci. 53(5), 3590–3602 (2018)CrossRefGoogle Scholar
  16. 16.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 45). Prog. Photovolt: Res. Appl. 23, 1–9 (2015)CrossRefGoogle Scholar
  17. 17.
    J.H. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013)CrossRefGoogle Scholar
  18. 18.
    N.-G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4(15), 2423–2429 (2013)CrossRefGoogle Scholar
  19. 19.
    Media Release Dyesol Ltd|ASX, DYE|FWB: D5I EPFL Achieves 21% efficiency for perovskites. http://www.dyesol.com/posts/cat/corporate-News/post/EPFL_Perovskite_solar_cell_21_percent_efficiency_entry_in_NREL_efficiency_chart/
  20. 20.
    X. Gan, K. Liu, X. Du, L. Guo, H. Liu, Bath temperature and deposition potential dependences of CuSCN nanorod arrays prepared by electrochemical deposition. J. Mater. Sci. 50(24), 7866–7874 (2015)CrossRefGoogle Scholar
  21. 21.
    A.T. Murray, J.M. Frost, C.H. Hendon, C.D. Molloy, D.R. Carbery, A. Walsh, Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. Chem. Commun. 51, 8935–8938 (2015)CrossRefGoogle Scholar
  22. 22.
    M.I. Ahmed, A. Habib, S.S. Javaid (2015) Perovskite solar cells: potentials challenges and opportunities, Int. J. Photoenergy.  https://doi.org/10.1155/2015/592308 CrossRefGoogle Scholar
  23. 23.
    T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 6, 2885 (2013)CrossRefGoogle Scholar
  24. 24.
    G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015)CrossRefGoogle Scholar
  25. 25.
    S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole extraction layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014)CrossRefGoogle Scholar
  26. 26.
    J.F. Li, K. Tatagi, B.P. Zhang, ceramics from mechanically alloyed powder and their anomalous photovoltaic effect. J. Mater. Sci. 39, 2879 (2004)CrossRefGoogle Scholar
  27. 27.
    Y.S. Yang, S.J. Lee, S. Yi, B.G. Chae, S.H. Lee, H.J. Joo, M.S. Jang, Schottky barrier effects in the photocurrent of sol–gel derived lead zirconate titanate thin film capacitors. Appl. Phys. Lett. 76, 774 (2000)CrossRefGoogle Scholar
  28. 28.
    T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Gupta, M. Tomar, V. Gupta, Study on Mn-induced Jahn–Teller distortion in BiFeO3 thin films. J. Mater. Sci. 49(17), 5997–6006 (2014)CrossRefGoogle Scholar
  30. 30.
    K. Chybczyńska, P. Ławniczak, B. Hilczer, B. Łęska, R. Pankiewicz, A. Pietraszko, L. Kępiński, T. Kałuski, P. Cieluch, F. Matelski, B. Andrzejewski, Synthesis and properties of bismuth ferrite multiferroic flowers. J. Mater. Sci. 49(6), 2596–2604 (2014)CrossRefGoogle Scholar
  31. 31.
    S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.-H. Ch, C.-H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, R. Ramesh, Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 95, 062909 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Alexe, D. Hesse, Tip-enhanced photovoltaic effects in bismuth ferrite. Nat. Commun. 1, 256 (2011)CrossRefGoogle Scholar
  33. 33.
    N. Rong, M. Chu, Y. Tang, C. Zhang, X. Cui, H. He, Y. Zhang, P. Xiao, Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation. J. Mater. Sci. 51(12), 5712–5723 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003)CrossRefGoogle Scholar
  35. 35.
    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  36. 36.
    M. Qin, K. Yao, Y.C. Liang, High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl. Phys. Lett. 93, 122904 (2008)CrossRefGoogle Scholar
  37. 37.
    Y.Y. Zang, D. Xie, Y. Chen, X. Wu, T.L. Ren, J.Q. Wei, Electrical and thermal properties of a carbon nanotube/polycrystalline BiFeO3/Pt photovoltaic heterojunction with CdSe quantum dots sensitization. Nanoscale 4, 2926–2930 (2012)CrossRefGoogle Scholar
  38. 38.
    W. Ji, K. Yao, Y.C. Liang, Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 22, 1763 (2010)CrossRefGoogle Scholar
  39. 39.
    W. Dong, Y. Guo, B. Guo, H. Liu, H. Li, H. Liu, Photovoltaic properties of BiFeO3 thin film capacitors by using Al-doped zinc oxide as top electrode. Mater. Lett. 91, 359–361 (2013)CrossRefGoogle Scholar
  40. 40.
    B. Chen, M. Li, Y.W. Liu, Z.H. Zuo, F. Zhuge, Q.F. Zhan, Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin film capacitors. Nanotechnology 22, 195201 (2011)CrossRefGoogle Scholar
  41. 41.
    F. Wu, Y. Guo, Y. Zhang, H. Duan, H. Li, H. Liu, Enhanced photovoltaic performance in polycrystalline BiFeO3 thin film ZnO nanorod heterojunctions. J. Phys. Chem. C 118, 15200–15206 (2014)CrossRefGoogle Scholar
  42. 42.
    G.S. Lotey, N.K. Verma, Gd-doped BiFeO3 nanoparticles—a novel material for highly efficient dye-sensitized solar cells. Chem. Phys. Lett. 574, 71–77 (2013)CrossRefGoogle Scholar
  43. 43.
    N. Kumar, A. Kaushal, C. Bhardwaj, D. Kaur, Effect of La doping on structural optical and magnetic properties of BiFeO3 thin films deposited by pulsed laser deposition technique. Optoelectron. Adv. Mater. 4, 1497–1502 (2010)Google Scholar
  44. 44.
    T.M.W.J. Bandara. H.D.N.S. Fernando, M. Furlani, I. Albinsson, M.A.K.L. Dissanayake, J.L. Ratnasekera, B.-E. Mellander, Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells. RSC Adv. 6(105), 103683–103691 (2016)CrossRefGoogle Scholar
  45. 45.
    T.M.W.J. Bandara. H.D.N.S. .Fernando, M. Furlani, I. Albinsson, M.A.K.L. Dissanayake, J.L. Ratnasekera, B.-E. Mellander, Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells. Phys. Chem. Chem. Phys. 18(16), 10873–10881 (2016)CrossRefGoogle Scholar
  46. 46.
    B. Chen, M. Yang, S. Priya, K. Zhu, Interface band structure engineering by ferroelectric polarization in perovskite solar cells. J. Phys. Chem. Lett. 7, 905–917 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Bielecki, P. Svedlindh, D.T. Tibebu, S. Cai, S.-G. Eriksson, L.B. Örjesson, C.S. Knee, Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: insights from Raman spectroscopy. Phys. Rev. B 86, 184422 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J. Mater. Sci. 44, 5102 (2009)CrossRefGoogle Scholar
  49. 49.
    C.S. Knee, M.G. Tucker, P. Manuel, S. Cai, J. Bielecki, L. Börjesson, S.G. Eriksson, High pressure crystal and magnetic phase transitions in multiferroic Bi0.9La0.1FeO3,. Chem. Mater. 26, 1180–1186 (2014)CrossRefGoogle Scholar
  50. 50.
    R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 9, 61 (2014)CrossRefGoogle Scholar
  51. 51.
    S. Chatterjee, A. Bera, A. Pal, Interfaces p–i–n heterojunctions with BiFeO3 perovskite nanoparticles and p-and n-type oxides: photovoltaic properties. J. ACS. Appl. Mater. 6, 20479–20486 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsChalmers University of TechnologyGothenburgSweden
  2. 2.Department of Physics and Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  3. 3.Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburgSweden
  4. 4.Department of PhysicsUniversity of GothenburgGothenburgSweden
  5. 5.ESAB ABGothenburgSweden

Personalised recommendations