Synthesis of Si-based KH560/RGO@Fe3O4 composite for improving electromagnetic properties in 2–18 GHz frequency range

  • Yuexuan Li
  • Yugang DuanEmail author


Silicon coupling reagent is regarded as a common additive on surface treatment of polymer due to its high bonding strength and low cost. In this paper, a series of γ-(2, 3-epoxypropoxy) propyltrimethoxysilane (KH560)-based reduced graphene oxide (RGO)@Fe3O4 (KH560/RGO@Fe3O4) composites with different ratio of Fe3O4 nanoparticles (NPs) are synthesized by a facile hydrothermal method. It is confirmed that the silicon reagent KH560, as a hopeful candidate for increasing the RGO lattice defects, is favorable to improve the electromagnetic wave absorption. Meanwhile, the microwave attenuation mechanism of KH560/RGO@Fe3O4 composite suggests that the dielectric loss mainly causes by multiple Debye dipolar relaxation and its magnetic loss comes from the eddy-current effect of Fe3O4 NPs over the high frequency range. In consequence, the KH560/RGO@Fe3O4 composite endows the excellent absorption performance, the reflection loss (RL) value is optimized to − 25 dB at 14.1 GHz with a thickness of 3 mm and the maximum frequency bandwidth for RL < − 10 dB is 4.1 GHz with a thickness of 4 mm.



We are thankful for financial support from the State Key Lab for Manufacturing Systems Engineering (Grant No. 1221209801). We also thank Prof. Xiang for the help on the material characterizations.

Supplementary material

10854_2018_433_MOESM1_ESM.docx (5 mb)
Supplementary material 1 (DOCX 5090 KB)


  1. 1.
    N. Billstrom, H. Berg, K. Gabrielson, M. Hertz, In 34th European Microwave Conference, vol. 2 (IEEE, Amsterdam, the Netherlands, 2004), pp. 1029–1032Google Scholar
  2. 2.
    Y.P. Duan, G.F. Li, L.D. Liu, S.H. Liu, Bull. Mater. Sci. 33, 633–636 (2010)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27, 2049–2053 (2015)CrossRefGoogle Scholar
  4. 4.
    B. Shen, W.T. Zhai, M.M. Tao, J.Q. Ling, W.G. Zheng, ACS Appl. Mater. Interfaces 5, 11383–11391 (2013)CrossRefGoogle Scholar
  5. 5.
    G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, C.W. Hu, Chem. Mater. 23, 1587–1593 (2011)CrossRefGoogle Scholar
  6. 6.
    H.L. Lv, Z.H. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, Adv. Mater. 30, 1706343 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, Z. chen, Y. zhang, R. Feng, X. Chen, C.X. Xiong, L.J. Dong, ACS Appl. Mater. Interfaces 10, 13860–13868 (2018)CrossRefGoogle Scholar
  8. 8.
    Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28, 486–490 (2016)CrossRefGoogle Scholar
  9. 9.
    Z.L. Zhang, Z.J. Ji, Y.P. Duan, S.C. Gu, J.B. Guo, J. Mater. Sci. 24, 968–973 (2013)Google Scholar
  10. 10.
    P. Wang, L.F. Cheng, Y.N. Zhang, W.Y. Yuan, H.X. Pan, H. Wu, Composites A 104, 68–80 (2018)CrossRefGoogle Scholar
  11. 11.
    X.X. Liu, Z.Y. Zhang, Y.P. Wu, Composites B 42, 326–329 (2011)CrossRefGoogle Scholar
  12. 12.
    P. Liu, Y. Huang, J. Yan, Y. Zhao, J. Mater. Chem. C 4, 6362–6370 (2016)CrossRefGoogle Scholar
  13. 13.
    Y.D. Deng, L. Zhao, B. Shen, L. Liu, W.B. Hu, J. Appl. Phys. 100, 014304 (2006)CrossRefGoogle Scholar
  14. 14.
    J.M. Wu, Z.M. Ye, H.Y. Ge, J. Chen, W.X. Liu, Z.F. Liu, J. Colloid Interface Sci. 506, 217–226 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Mishra, A.P. Singh, V. Gupta, A. Chandra, S.K. Dhawan, J. Alloys Compd. 688, 399–403 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Li, T.S. Xie, S.L. Yang, J.H. Jin, J.M. Jiang, J. Phys. Chem. C 116, 9196–9201 (2012)CrossRefGoogle Scholar
  17. 17.
    X.S. Qi, Q. Hu, H.B. Cai, R. Xie, Z.C. Bai, Y. Jiang, S.J. Qin, W. Zhong, Y.W. Du, Sci. Rep. 6, 37972 (2016)CrossRefGoogle Scholar
  18. 18.
    F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)CrossRefGoogle Scholar
  19. 19.
    R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16, 401–405 (2004)CrossRefGoogle Scholar
  20. 20.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448, 457 (2007)CrossRefGoogle Scholar
  21. 21.
    A.G. D’Aloia, F. Marra, A. Tamburrano, G. De Bellis, M.S. Sarto, Carbon 73, 175–184 (2014)CrossRefGoogle Scholar
  22. 22.
    F. Wu, Y. Xia, Y. Wang, M. Wang, J. Mater. Chem. A 2, 20307–20315 (2014)CrossRefGoogle Scholar
  23. 23.
    X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, ACS Appl. Mater. Interfaces 6, 7471–7478 (2014)CrossRefGoogle Scholar
  24. 24.
    X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong, G. Qin, ACS Appl. Mater. Interfaces 8, 3494–3498 (2016)CrossRefGoogle Scholar
  25. 25.
    X. Jian, B. Wu, Y.F. Wei, S.X. Dou, X.L. Wang, W.D. He, N. Mahmood, ACS Appl. Mater. Interfaces 8, 6101–6109 (2016)CrossRefGoogle Scholar
  26. 26.
    F.Q. Hu, K.W. MacRenaris, E.A. Waters, E.A. Schultz-Sikma, A.L. Eckermann, T.J. Meade, Chem. Commun. 46, 73–75 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Zong, Y. Huang, Y. Zhao, X. Sun, C.H. Qu, D.D. Luo, J.B. Zheng, RSC Adv. 3, 23638–23648 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Long, B.C. Xu, C.Z. Han, Z.H. Chen, J.G. Guan, J. Alloys Compd. 709, 735–741 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Zhang, Y.H. Dou, H.C. Gu, J. Cryst. Growth 296, 221–226 (2006)CrossRefGoogle Scholar
  30. 30.
    Q. Zeng, X.H. Xiong, P. Chen, Q. Yu, Q. Wang, R.C. Wang, H.R. Chu, J. Mater. Chem. C 4, 10518–10528 (2016)CrossRefGoogle Scholar
  31. 31.
    W.C. Zhou, X.J. Hu, X.X. Bai, S. Zhou, C.H. Sun, J. Yan, P. Chen, ACS Appl. Mater. Interfaces 3, 3839–3845 (2011)CrossRefGoogle Scholar
  32. 32.
    Y.J. Chen, G. Xiao, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y. Ma, P. Gao, C.L. Zhu, M.S. Cao, H.B. Jin, J. Phys. Chem. C 115, 13603–13608 (2011)CrossRefGoogle Scholar
  33. 33.
    J.R. Chen, X.T. Shi, L. Ren, Y.J. Wang, Carbon 111, 18–27 (2017)CrossRefGoogle Scholar
  34. 34.
    C.Y. Hou, Q.H. Zhang, M.F. Zhu, Y.G. Li, H.Z. Wang, Carbon 49, 47–53 (2011)CrossRefGoogle Scholar
  35. 35.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126–1130 (1970)CrossRefGoogle Scholar
  36. 36.
    Z. Jin, J. Yao, C. Kittrell, J.M. Tour, ACS Nano 5, 4112–4117 (2011)CrossRefGoogle Scholar
  37. 37.
    Y.C. Si, E.T. Samulski, Chem. Mater. 20, 6792–6797 (2008)CrossRefGoogle Scholar
  38. 38.
    H.J. Wu, G.L. Wu, L.D. Wang, Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  39. 39.
    D.P. Sun, Q. Zou, G.Q. Qian, C. Sun, W. Jiang, F.S. Li, Acta Mater. 61, 5829–5834 (2013)CrossRefGoogle Scholar
  40. 40.
    Y.H. Guo, S.W. Liu, Z.Y. Zhang, S.T. Dong, H.Y. Wang, J. Alloys Compd. 694, 549–555 (2017)CrossRefGoogle Scholar
  41. 41.
    Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Y.J. Wang, Mater. Res. Bull. 98, 59–63 (2018)CrossRefGoogle Scholar
  42. 42.
    R.W. Shu, G.Y. Zhang, J.B. Zhang, X. Wang, M. Wang, Y. Gan, J.J. Shi, J. He, J. Alloys Compd. 736, 1–11 (2018)CrossRefGoogle Scholar
  43. 43.
    D. Li, H.Y. Liao, H. Kikuchi, T. Liu, ACS Appl. Mater. Interfaces 9, 44704–44714 (2017)CrossRefGoogle Scholar
  44. 44.
    X. Sun, J.P. He, G.X. Li, J. Tang, T. Wang, Y.X. Guo, H.R. Xue, J. Mater. Chem. C 1, 765–777 (2013)CrossRefGoogle Scholar
  45. 45.
    B.Y. Kuang, W.L. Song, M.Q. Ning, J.B. Li, Z.J. Zhao, D.Y. Guo, M.S. Cao, H. B. Jin, Carbon 127, 209–217 (2018)CrossRefGoogle Scholar
  46. 46.
    Y. Cao, Q.M. Su, R.C. Che, G.H. Du, B.S. Xu, Synth. Met. 162, 968–973 (2012)CrossRefGoogle Scholar
  47. 47.
    Q.X. Yang, L. Liu, D. Hui, M. Chipara, Composites B 87, 256–262 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering, State Key Lab for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations