Advertisement

Investigation on structure and microwave dielectric properties of novel high dielectric constant Ca(1−3x/2)CexTiO3 ceramics sintered in nitrogen atmosphere

  • Xiao-Hong WangEmail author
  • Mao-Lin Mu
  • Hai Jiang
  • Wen Lei
  • Wen-Zhong Lu
Article

Abstract

Ca(1−3x/2)CexTiO3 (0 ≤ x ≤ 0.40, CCT) ceramics were prepared in nitrogen atmosphere using the conventional solid-state reaction method. The XRD, Raman spectra and XPS were employed to investigate the relationship between the structure and microwave dielectric properties of CCT ceramics. XRD results and Raman spectra analysis indicated that all the samples were the perovskite structure and a transition from Pbnm to I4/mcm at x = 0.16 was observed. The SEM micrographs showed the average grain size increased with x and dense structures were achieved at x ≥ 0.1, but abnormal grain growth occurred at x ≥ 0.16. With the increase of cerium addition, both the dielectric constant (εr) and Q × f value increased at first and then decreased, while temperature coefficient of resonator frequency (τf) decreased monotonously from 575 to 295 ppm/°C. The substitution of Ce in A-site restrained the reduction of Ti4+ ions and enhanced the oxygen octahedral distortion. For the Ca0.79Ce0.14TiO3 ceramics, a high Q × f value (~ 11705 GHz) in addition to the high dielectric constant (εr = 130.6), was exhibited which was suitable for integration and miniaturization of microwave component.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51302093). The authors are grateful to the Analytical and Testing Center, Huazhong University of Science and Technology, for the XPS analyses.

References

  1. 1.
    M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063 (2006)Google Scholar
  2. 2.
    H.F. Kay, P.C. Bailey, Acta Cryst. 10, 219 (1957)CrossRefGoogle Scholar
  3. 3.
    I.S. Kim, W.H. Jung, Y. Inaguma et al., Mater. Res. Bull. 30, 307 (1995)CrossRefGoogle Scholar
  4. 4.
    W.S. Kim, E.S. Kim, K.H. Yoon, J. Am. Ceram. Soc. 82, 2111 (1999)CrossRefGoogle Scholar
  5. 5.
    K.H. Yoon, W.S. Kim, E.S. Kim, Mater. Sci. Eng. B 99, 112 (2003)CrossRefGoogle Scholar
  6. 6.
    M. Yoshida, N. Hara, T. Takada et al., Jpn. J. Appl. Phys. 36, 6818 (1997)CrossRefGoogle Scholar
  7. 7.
    M.S. Fu, X.Q. Liu, X.M. Chen, J. Eur. Ceram. Soc. 28, 585 (2008)CrossRefGoogle Scholar
  8. 8.
    R. Lowndes, F. Azough, R. Cernik et al., J. Eur. Ceram. Soc. 32, 3791 (2012)CrossRefGoogle Scholar
  9. 9.
    H.L. Chen, C.L. Huang, Jpn. J. Appl. Phys. 41, 5650 (2002)CrossRefGoogle Scholar
  10. 10.
    Z. Xiong, C.T. Yang, B. Tang et al., Ceram. Int. 44, 7384 (2018)CrossRefGoogle Scholar
  11. 11.
    Z. Xiong, B. Tang, Z. Fang et al., Ceram. Int. 44, 7771 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Templeton, X.R. Wang, S.J. Penn et al., J. Am. Ceram. Soc. 83, 95 (2000)CrossRefGoogle Scholar
  13. 13.
    R.C. Pullar, S.J. Penn, X. Wang et al., J. Eur. Ceram. Soc. 29, 419 (2009)CrossRefGoogle Scholar
  14. 14.
    H.Y. Peng, H.S. Ren, M.Z. Dang et al., Ceram. Int. 44, 6527 (2018)CrossRefGoogle Scholar
  15. 15.
    Z.X. Fang, B. Tang, F. Si, S.R. Zhang, J. Alloys Compd. 693, 843 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Makovec, Z. Samardzija, D. Kolar, J. Solid State Chem. 123, 30 (1996)CrossRefGoogle Scholar
  17. 17.
    P.S. Anjana, M.T. Sebastian, A.K. Axelsson et al., J. Eur. Ceram. Soc. 27, 3445 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Tao, M.L. Mu, X.H. Wang et al., Front. Pharmacol. 28, 16888 (2017)Google Scholar
  19. 19.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech 8, 402 (1960)CrossRefGoogle Scholar
  20. 20.
    Y. Li, S. Qin, F. Seifert, J. Solid State Chem. 180, 824 (2007)CrossRefGoogle Scholar
  21. 21.
    P. McMillan, N. Ross, Phys. Chem. Miner. 16, 21 (1988)CrossRefGoogle Scholar
  22. 22.
    T. Hirata, K. Ishioka, M. Kitajima, J. Solid State Chem. 124, 353 (1996)CrossRefGoogle Scholar
  23. 23.
    H. Zheng, G.D.C. de Györgyfalva, R. C, Quimby et al., J. Eur. Ceram. Soc. 23, 2653 (2003)CrossRefGoogle Scholar
  24. 24.
    R. Lowndes, M. Deluca, F. Azough et al., J. Appl. Phys. 113, 044115 (2013)CrossRefGoogle Scholar
  25. 25.
    U. Balachandran, N.G. Eror, Solid State Commun. 44, 815 (1982)CrossRefGoogle Scholar
  26. 26.
    E. Cockayne, B.P. Burton, Phys. Rev. B 62, 3735 (2000)CrossRefGoogle Scholar
  27. 27.
    E. Paparazzo, Chem. Eng. J. 170, 342 (2011)CrossRefGoogle Scholar
  28. 28.
    E. Beche, P. Charvin, D. Perarnau et al., Surf. Interface Anal. 40, 264 (2008)CrossRefGoogle Scholar
  29. 29.
    A.J. Bosman, E.E. Havinga, Phys. Rev. 129, 1593 (1963)CrossRefGoogle Scholar
  30. 30.
    R.G. Matveeva, M.B. Varfolomeev, L.S. Il’yuhchenko, Russ. J. Inorg. Chem. 29, 17 (1984)Google Scholar
  31. 31.
    R.C. Pullar, J.D. Breeze, N.M.N. Alford, J. Am. Ceram. Soc. 88, 2466 (2005)CrossRefGoogle Scholar
  32. 32.
    I.M. Reaney, E.L. Colla, N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  2. 2.Key Lab of Functional Materials for Electronic Information(B), MOEHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations