Advertisement

Impact of molarity on structural, optical, morphological and electrical properties of copper oxide thin films prepared by cost effective jet nebulizer spray pyrolysis technique

  • V. JagadeesanEmail author
  • Venkat Subramaniam
Article
  • 17 Downloads

Abstract

Copper oxide (CuO) thin films were prepared by simple and cost effective jet nebulizer spray pyrolysis method with different molar concentration 0.1, 0.2 and 0.3 M named as J1, J2 and J3 respectively. The impact of molarity on structural, optical, morphological and electrical of properties of CuO thin film was studied. The structural studies confirmed that the prepared CuO thin films are monoclinic crystal structure matching with standard JCPDS card No. 89-5899. The thickness of CuO thin films determined by surface profilometer found to be increasing while increasing molar concentration. The optical energy band gaps were determined using Kulbelka–Munk (K–M) method are found to be 2.1 eV, 1.9 eV and 1.8 eV for J1, J2 and J3 respectively. The morphological properties and chemical composition of CuO thin film were investigated via field-emission scanning electron microscope (FESEM) and energy dispersive analysis from X-ray spectroscopy (EDAX). According to FESEM all the prepared CuO thin films are well covered and adhered to the substrate with good homogeneity and EDAX spectra confirms the presence of copper (Cu) and oxygen (O). The adhesion strength has been determined in accordance with test method D3330 using scotch tape test. The electrical conductivity of CuO thin films were investigated. The maximum conductivity value of the CuO thin film is observed 2.75 × 10−8 S/cm.

References

  1. 1.
    A.I. Hassan, S.I. Maki, Energy Procedia 119, 961–971 (2017)CrossRefGoogle Scholar
  2. 2.
    V. Saravanakannan, T. Radhakrishnan, Int. J. ChemTech. Res. 6, 306–310 (2014)Google Scholar
  3. 3.
    S. Chandrasekaran, Sol. Energy Mater. Sol. Cells 109, 220–226 (2013)CrossRefGoogle Scholar
  4. 4.
    S.B.B. Wang, C.H.H. Hsiao, S.J.J. Chang, K.T.T. Lam et al., Sens. Actuators A 171, 207–211 (2011)CrossRefGoogle Scholar
  5. 5.
    K.J. Choi, H.W. Jang, Sensors 10, 4083–4099 (2010)CrossRefGoogle Scholar
  6. 6.
    M.M. Rahman, A.J. Saleh Ahammad, J.-H. Jin, S.J. Ahn, J.-J. Lee, Sensors 10, 4855–4886 (2010)CrossRefGoogle Scholar
  7. 7.
    X. Zhang, W. Shi, J. Zhu, D. Kharistal, W. Zhao, B. Lalia, et al., ACS Nano 5, 2013–2019 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Rossi, K. Zhang, D. Esteve, P. Alphonse, P. Tailhades, C. Vahlas, J. Microelectromech. Syst. 16, 919–931 (2007)CrossRefGoogle Scholar
  9. 9.
    P. Markworth, X. Liu, J. Dai, W. Fan, T.J. Marks, R.P. Chang, J. Mater. Res. 16, 2408–2414 (2001)CrossRefGoogle Scholar
  10. 10.
    T. Mahalingam, J. Chitra, J. Chu, S. Velumani, P. Sebastian, Sol. Energy Mater. Sol. Cells 88, 209–216 (2005)CrossRefGoogle Scholar
  11. 11.
    K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16(2), 337–343 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Oral, E. Menşur, M. Aslan, E. Başaran, Mater. Chem. Phys. 83, 140–144 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Ogwu, T. Darma, E. Bouquerel, J. Achiev. Mater. Manuf. Eng. 24, 172–177 (2007)Google Scholar
  14. 14.
    V. Saravanan, P. Shankar, G.K. Mani, J.B.B. Rayappan, J. Anal. Appl. Pyrol. 111, 272–277 (2015)CrossRefGoogle Scholar
  15. 15.
    K. Khojier, H. Savaloni, Z. Sadeghi, J. Theor. Appl. Phys. 8, 1–8 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Mariappan, V. Ponnuswamy, R. Suresh, P. Suresh, A. Chandra Bose, M. Ragavendar, J. Alloys Compd. 582, 387–391 (2014)CrossRefGoogle Scholar
  17. 17.
    C.R. Dhas, A. Dinu, A.J. Christy, K. Jeyadheepan, A.M.E. Raj, C. Sanjeeviraja, Asian J. Appl. Sci. 7, 671–684 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Ravichandran, A. Manivasaham, K. Subha, A. Chandrabose, R. Mariappan, Surf. Interfaces 1–3, 13–20 (2016)CrossRefGoogle Scholar
  19. 19.
    R. David Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, S.R. Srikumare, R. Chandramohan, Mater. Sci. Semicond. Process. 74, 129–135 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Lamri Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M.S. Aida, N. Attaf, Int. J. Math. Comput. Phys. Electr. Comput. Eng. 9, 610–613 (2015)Google Scholar
  21. 21.
    G. Williamson, R. Smallman III, Philos. Mag. 1, 34–46 (1956)CrossRefGoogle Scholar
  22. 22.
    M. Shkir, S. AlFaify, Sci. Rep. 7, 16091 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Ravi Dhas, D. Alexander, A.J. Christy, A. Jeyadheepan, A. Moses, E. Raj, S. Raja, Asian J. Appl. Sci. 7(8), 671–684 (2014)CrossRefGoogle Scholar
  24. 24.
    G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golovanov, A. Cornet, J. Morante, A. Cabot, J. Arbiol, Thin Sol. Films 460, 315–323 (2004)CrossRefGoogle Scholar
  25. 25.
    A.H. Jayatissa, K. Guo, A.C. Jayasuriya, Appl. Surf. Sci. 255, 9474–9479 (2009)CrossRefGoogle Scholar
  26. 26.
    P. Kulbelka, F. Munk, Z. Tech. Phys. 12, 593 (1931)Google Scholar
  27. 27.
    R.R. Yeredla, H. Xu, Nanotechnology 19, 055706 (2008)CrossRefGoogle Scholar
  28. 28.
    M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104 (2016)CrossRefGoogle Scholar
  29. 29.
    P. Venkateswari, P. Thirunavukkarasu, M. Ramamurthy, M. Balaji, J. Chandrasekaran, Optik 140, 476–484 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ElectronicsPSG College of Arts & ScienceCoimbatoreIndia

Personalised recommendations