Advertisement

Growth, structural, optical, thermal, laser damage threshold and theoretical investigations of organic nonlinear optical 2-aminopyridinium 4-nitrophenolate 4-nitrophenol (2AP4N) single crystal

  • P. KaruppasamyEmail author
  • T. Kamalesh
  • C. Senthil Kumar
  • Muthu Senthil Pandian
  • P. Ramasamy
  • Sunil Verma
  • S. Venugopal Rao
Article
  • 79 Downloads

Abstract

The good quality organic 2-aminopyridinium 4-nitrophenolate 4-nitrophenol (2AP4N) single crystals with the dimension of 30 × 5 × 5 mm3 have been grown by slow evaporation solution technique (SEST) at ambient temperature within the period of 30 days using methanol as solvent. Initially, the structure of grown 2AP4N single crystal was confirmed by the single crystal X-ray diffraction (SXRD). Intermolecular interactions of 2AP4N molecule were analyzed by Hirshfeld surface analysis. The grown crystal was studied by powder X-ray diffraction (PXRD) measurement, it has sharp peaks which indicates good crystallinity. The presence of various functional groups have been confirmed by FTIR and FT-Raman spectra analysis. The optical quality (transparency) of the grown crystal was studied by UV–Vis NIR spectral analysis and it has good optical transparency in the visible and near IR regions with the cut-off wavelength of 470 nm. The energy values of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been calculated. The density of states (DOS) spectra was used to study the bonding, anti-bonding and non-bonding interactions. The Mulliken charge distribution was used to confirm the sign and magnitude of charge of each atom. The distribution of charge and its related properties were analyzed by the molecular electrostatic potential (MEP). The natural bonding orbital (NBO) theory was used to analyse the inter-intra molecular interactions of 2AP4N. First-order hyperpolarizability (βtotal) of 2AP4N molecule was found to be 1.071−29 esu, which is 28.6 times that of urea. Photoluminescence measurement reveals that the 2AP4N crystal has very high emission at 500 nm. The thermal stability of grown crystal was found to be 90 °C. The dislocation density was analyzed and it was confirmed to possess less defects. The laser damage threshold (LDT) energy has been measured by using Nd: YAG laser (532 nm). The efficiency of second harmonic generation (SHG) of grown 2AP4N was evaluated by Kurtz-Perry powder technique. The SHG efficiency of 2AP4N was found to be 4.5 times that of standard KDP material. The high SHG values of 2AP4N crystals may be more favorable for nonlinear optical (NLO) device applications.

Notes

Acknowledgements

This work was supported by the BRNS Project (Ref. 34/14/06/2016-BRNS/34032). The authors would like to thank SAIF, IIT-Madras, Tamil Nadu, India for SXRD analysis and CIF, Pondicherry University for photoluminescence (PL) measurement.

Supplementary material

10854_2018_427_MOESM1_ESM.docx (851 kb)
Supplementary material 1 (DOCX 850 KB)

References

  1. 1.
    P.N. Prasad, D.J. Williams, Introduction to nonlinear optical effects in molecules and polymers, 1st edn. (Wiley, New York, 1991)Google Scholar
  2. 2.
    D.S. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals, 1st edn. (Academic Press, London, 1987)Google Scholar
  3. 3.
    S. Ji, F. Wang, L. Zhu, X. Xu, Z. Wang, X. Sun, Sci Rep. 3, 1605 (2013).  https://doi.org/10.1038/srep01605 CrossRefGoogle Scholar
  4. 4.
    J. Zyss, Molecular nonlinear optics materials, physics and devices (Academic Press, New York, 1994)Google Scholar
  5. 5.
    C.H. McAteer, M. Balasubramanian, R. Murugan, in Comprehensive heterocyclic chemistry III, 7, ed. by A.R. Katrtzky, C.A. Ramsden, E.F.V. Scriven, R.J.K. Taylor (Elsevier, Oxford, 2008), pp. 309–336CrossRefGoogle Scholar
  6. 6.
    V. Murugesan, M. Saravanabhavan, M. Sekar, Spectrochim Acta A 147, 99–106 (2015).  https://doi.org/10.1016/j.saa.2015.03.083 CrossRefGoogle Scholar
  7. 7.
    J. Hine, J. Am. Chem. Soc. 82, 4877–4880 (1960).  https://doi.org/10.1021/ja01503a031 CrossRefGoogle Scholar
  8. 8.
    T. Matsui, H.C. Ke, L.G. Hepler, Can. J. Chem. 52, 2906–2911 (1974),  https://doi.org/10.1139/v74-423 CrossRefGoogle Scholar
  9. 9.
    C.C. Evans, M. Bagieu-Beucher, R. Massse, J.F. Nicoud, Chem. Mater. 10, 847–854 (1998).  https://doi.org/10.1139/v74-423 CrossRefGoogle Scholar
  10. 10.
    K.S. Huang, D. Britton, M.C. Ettera, S.R. Byrn, J. Mater. Chem. 7, 713–720 (1997).  https://doi.org/10.1039/A604311J CrossRefGoogle Scholar
  11. 11.
    S. Draguta, M.S. Fonari, A.E. Masunov, J. Zazueta, S. Sullivan, M.Y. Antipin, T.V. Timofeeva, CrystEngComm. 15, 4700–4710 (2013).  https://doi.org/10.1039/C3CE40291F CrossRefGoogle Scholar
  12. 12.
    T. Chen, Z. Sun, L. Li, S. Wang, Y. Wang, J. Luo, M. Hong, J. Cryst. Growth 338, 157–161 (2012).  https://doi.org/10.1016/j.jcrysgro.2011.10.023 CrossRefGoogle Scholar
  13. 13.
    J. Pecaut, R. Masse, Acta Crystallogr. B 49, 277–282 (1993).  https://doi.org/10.1107/S0108768192008553 CrossRefGoogle Scholar
  14. 14.
    J.F. Nicoud, R.J. Twieg, D.S. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals (Academic Press, London, 1987)Google Scholar
  15. 15.
    M.J. Frisch, G.W. Trucks et al., Gaussian, Inc., Wallingford, CT, 2009Google Scholar
  16. 16.
    A. Frisch, A.B. Nielson, A.J. Holder, GAUSS VIEW User’s Manual (Gaussian Inc., Pittsburgh, PA, 2000)Google Scholar
  17. 17.
    M.H. Jamr’oz, Spectrochim. Acta A 114, 220–230 (2004)CrossRefGoogle Scholar
  18. 18.
    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Compos. Chem. 29, 839 – 845 (2008).  https://doi.org/10.1002/jcc.20823 CrossRefGoogle Scholar
  19. 19.
    M. Jaya Prakash, T.P. Radhakrishnan, Cryst. Growth Des. 5, 721–725 (2005).  https://doi.org/10.1021/cg049763e CrossRefGoogle Scholar
  20. 20.
    G. Anandha babu, R. Perumal Ramasamy, P. Ramasamy, Mater. Chem. Phys. 117, 326–330 (2009).  https://doi.org/10.1016/j.matchemphys.CrossRefGoogle Scholar
  21. 21.
    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. LoueEr, P. Scardi, J. Appl. Cryst. 32, 36–50 (1999).  https://doi.org/10.1107/S0021889898009856 CrossRefGoogle Scholar
  22. 22.
    E.R. Sokolowska, B. Marciniak, J. Ławecka, B. Bujnicki, J. Drabowicz, A. Rykowski, J. Sulfur Chem. 34, 651–660 (2013).  https://doi.org/10.1080/17415993.2013.799165 CrossRefGoogle Scholar
  23. 23.
    A.H. Reshak, D. Stys, S. Auluck, I.V. Kityk, Phys. Chem. Chem. Phys. 12, 2975–2980 (2010).  https://doi.org/10.1039/B920743K CrossRefGoogle Scholar
  24. 24.
    C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Cryst. 39, 453–457 (2006),  https://doi.org/10.1107/S002188980600731X CrossRefGoogle Scholar
  25. 25.
    J. Melsheimer, D. Ziegler, Thin Solid Films. 129, 35–47 (1985).  https://doi.org/10.1016/0040-6090(85)90092-6 CrossRefGoogle Scholar
  26. 26.
    S.J. Ikhmayies, R.N. Ahmad-Bitar, J. Mater. Res. Technol. 2, 221–227 (2013).  https://doi.org/10.1016/j.jmrt.2013.02.012 CrossRefGoogle Scholar
  27. 27.
    P. Karuppasamy, T. Kamalesh, V. Mohankumar, S. Abdul Kalam, M. Senthil Pandian, P. Ramasamy, S. Verma, S. Venugopal Rao, J. Mol. Struct. 1176, 254–265 (2019).  https://doi.org/10.1016/j.optmat.2018.07.039 CrossRefGoogle Scholar
  28. 28.
    K. Sankaranarayanan, P. Ramasamy, J. Cryst. Growth 280, 467–473 (2005).  https://doi.org/10.1016/j.jcrysgro.2005.03.075 CrossRefGoogle Scholar
  29. 29.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627–637 (1996).  https://doi.org/10.1002/pssb.19660150224 CrossRefGoogle Scholar
  30. 30.
    P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, RSC Adv. 6, 109105–109123 (2016).  https://doi.org/10.1039/C6RA21590D CrossRefGoogle Scholar
  31. 31.
    A.L. Tenderholt, QMForge, Version 2.1; Stanford University: Stanford, CA, USAGoogle Scholar
  32. 32.
    E. Isac Paulraj, S. Muthu, Spectrochim. Acta A. 108, 38–49 (2013).  https://doi.org/10.1016/j.saa.2013.01.061 CrossRefGoogle Scholar
  33. 33.
    S. Muthu, E. Isac Paulraj, J. Mol. Struct. 1038, 145–162 (2013).  https://doi.org/10.1016/j.molstruc.2013.01.043 CrossRefGoogle Scholar
  34. 34.
    V. Balachandran, A. Lakshmi, A. Janaki, J. Mol. Struct. 1013, 75–85 (2012).  https://doi.org/10.1016/j.molstruc.2012.01.021 CrossRefGoogle Scholar
  35. 35.
    T. Uma Devi, R. Meenakshi, G. Kalpana, A. Josephine Prabha, J. Phys. Sci. 28, 27–47 (2017).  https://doi.org/10.21315/jps2017.28.1.3 CrossRefGoogle Scholar
  36. 36.
    T. Hughbanks, R. Hoffmann, J. Am. Chem. Soc. 105, 3528–3537 (1983).  https://doi.org/10.1021/ja00349a027 CrossRefGoogle Scholar
  37. 37.
    M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, J. Chem. Phys. 109, 6680–6854 (1998).  https://doi.org/10.1063/1.477252 CrossRefGoogle Scholar
  38. 38.
    S.I. Gorelsky, A.B.P. Lever, J. Organomet. Chem. 635, 187–196 (2001).  https://doi.org/10.1016/S0022-328X(01)01079-8 CrossRefGoogle Scholar
  39. 39.
    E.R. Davidson, S.X. Chakravarthy, Theo. Chim. Acta. 83, 319–330 (1992).  https://doi.org/10.1007/BF01113058 CrossRefGoogle Scholar
  40. 40.
    R.S. Mulliken, J. Chem. Phys. 23, 1833–1840 (1955).  https://doi.org/10.1063/1.1740588 CrossRefGoogle Scholar
  41. 41.
    S. Grimme, Zeitschrift für Physikalische Chemie. 205, 136–137 (1654),  https://doi.org/10.1524/zpch.1998.205.Part_1.136b CrossRefGoogle Scholar
  42. 42.
    V.P. Gupta, Principles and Applications of Quantum Chemistry. (Elsevier, Amsterdam, 2016) pp. 195–214.  https://doi.org/10.1016/B978-0-12-803478-1.00006-6 CrossRefGoogle Scholar
  43. 43.
    P. Politzer, D.G. Truhlar (eds.), Chemical Applications of Atomic and Molecular Electrostatic Potentials (Plenum Press, New York, 1981)Google Scholar
  44. 44.
    J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211–7218 (1980).  https://doi.org/10.1021/ja00544a007 CrossRefGoogle Scholar
  45. 45.
    M. Snhelatha, C. Ravikumar, I. Hubertjoe, N. Sekar, V.S. Jayakumar, Spectrochim. Acta. A. 72, 654–662 (2009),  https://doi.org/10.1016/j.saa.2008.11.017 CrossRefGoogle Scholar
  46. 46.
    R.I. Al-Wabli, A. Salman, V. Shyni, H.A. Ghabbour, I. Hubert Joe, M.S. Almutairi, Y.A. Maklad, M.I. Attia, J. Mol. Struct. 1155, 457–468 (2018).  https://doi.org/10.1016/j.molstruc.2017.10.116 CrossRefGoogle Scholar
  47. 47.
    A.E. Reed, F. Weinhold, J. Chem. Phys. 78, 4066–4073 (1983).  https://doi.org/10.1063/1.445134 CrossRefGoogle Scholar
  48. 48.
    J. Chocholou sova, V. Spirko, P. Hobza, Phys. Chem. Chem. Phys. 6, 37–41 (2004).  https://doi.org/10.1039/B314148A CrossRefGoogle Scholar
  49. 49.
    R. Rahmani, N. Boukabcha, A. Chouaih, F. Hamzaoui, S. Goumri–Said, J. Mol. Struct. 1155, 484–495 (2018).  https://doi.org/10.1016/j.molstruc.2017.11.033 CrossRefGoogle Scholar
  50. 50.
    C.S. Abraham, J.C. Prasana, S. Muthu, Spectrochim. Acta A 181, 153–163 (2017).  https://doi.org/10.1016/j.saa.2017.03.045 CrossRefGoogle Scholar
  51. 51.
    D.R. Kanis, M.A. Ratner, T.J. Marks, Chem. Rev. 94, 195–242 (1994).  https://doi.org/10.1021/cr00025a007 CrossRefGoogle Scholar
  52. 52.
    D.A. Kleinmann, Phys. Rev. 126, 1977–1979 (1962).  https://doi.org/10.1103/PhysRev.126.1977 CrossRefGoogle Scholar
  53. 53.
    D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy, An Introduction to Vibrational and Electronic Spectroscopy (Dover Publications, Inc., New York, 1989)Google Scholar
  54. 54.
    J. Dalal, N. Sinha, H. Yadav, B. Kumar, RSC Adv. 5, 57735–57748 (2015).  https://doi.org/10.1039/C5RA10501C CrossRefGoogle Scholar
  55. 55.
    E.S. Rorem, J. Chromatogr. A. 4, 162–165 (1960),  https://doi.org/10.1016/S0021-9673(01)98388-8 CrossRefGoogle Scholar
  56. 56.
    G. Om Reddy, K.S. Ravikumar, Thermochim. Acta 198, 147–165 (1992).  https://doi.org/10.1016/0040-6031(92)85069-8 CrossRefGoogle Scholar
  57. 57.
    V.V. Azarov, L.V. Atroshchenko, Y.K. Danileiko, M.I. Kolybaevs, Y.P. Minaev, V.N. Nikolaev, A.V. Sidorin, B.I. Zakharkin, Sov. J. Quantum Electron. 15, 89–90 (1985).  https://doi.org/10.1070/QE1985v015n01ABEH005862 CrossRefGoogle Scholar
  58. 58.
    K.E. Montgomery, E.P. Milanovich, J. App. Phys. 68, 3979 (1990).  https://doi.org/10.1063/1.346259 CrossRefGoogle Scholar
  59. 59.
    H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, K. Yoshida, J. Appl. Phys. 45, 766 (2006),  https://doi.org/10.1143/JJAP.45.766 CrossRefGoogle Scholar
  60. 60.
    S.K. Kurtz, T.T. Perry, J. App. Phys. 39, 3798 (1968).  https://doi.org/10.1063/1.1656857 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SSN Research CentreSSN College of EngineeringChennaiIndia
  2. 2.Laser Materials Development and Devices DivisionRaja Ramanna Centre for Advanced Technology (RRCAT)IndoreIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia
  4. 4.Advanced Centre of Research in High Energy Materials (ACRHEM)University of HyderabadHyderabadIndia

Personalised recommendations